Emittance measurements for low charge operation with short-pulse injector laser at FLASH

M. Rehders

Time resolved experiments: time resolution is limited by the pulse length of the radiation pulse

Pulse can be used as a pump and/or probe pulse

Shorter pulses \rightarrow shorter time scales can be studied

Imaging experiments: short pulses prevent structural damage while the image is taken

- Generation of extremely short SASE pulses at FLASH
 - Why do we need a short pulse injector laser (Laser3)?
- Influence of the injector laser pulse durations on electron bunch parameters for low charges
 - Simulation results
- Emittance measurements for low charges at FLASH
 - Laser2
 - Laser3
 - solenoid scan
 - Challenges for low charges
 - Comparison for identical machine settings

Generation of femtosecond scale radiation pulses at FLASH

	Typical FLASH parameters
Injector laser pulse duration (FWHM)	15 ps
Bunch charge	0.08 – 1 nC
Compression factor	200 – 50
FEL pulse duration (FWHM)	30 – 200 fs

single spike limit

determined by slippage of photon pulse w.r.t. particles during 1 FEL gain length

$$\rightarrow \sigma_{z,ph.min} \approx 1 \mu m$$
 (at FLASH)

Genesis 1.3 simulations

Generation of femtosecond scale radiation pulses at FLASH

	Typical FLASH parameters	Very short FLA	t pulses at ASH
Injector laser pulse duration (FWHM)	15 ps	15 ps	
Bunch charge	0.08 – 1 nC	20 pC	
Compression factor	200 – 50	1600	
FEL pulse duration (FWHM)	30 – 200 fs	~ 3 fs	

A large compression factor requires large RF stability which is technically very challenging

Requires further reduction of bunch lengths already at the injector

Generation of femtosecond scale radiation pulses at FLASH

	Typical FLASH parameters	Very short pulses at FLASH	
Injector laser pulse duration (FWHM)	15 ps	15 ps	1.7-3.7 ps
Bunch charge	0.08 – 1 nC	20 pC	
Compression factor	200 – 50	1600	350 – 700
FEL pulse duration (FWHM)	30 – 200 fs	~ 3 fs	

New short pulse injector laser has been installed

SASE simulation from start-to-end simulation for FLASH

- Resulting from start-to-end simulation for FLASH
- Settings very close to real machine settings (optics) (not optimized)
- Longitudinal space charge forces and wakefields in the undulator are not included in the Genesis simulation

- Generation of extremely short SASE pulses at FLASH
 - Why do we need a short pulse injector laser (Laser3)?
- Influence of the injector laser pulse durations on electron bunch parameters for low charges
 - Simulation results
- Emittance measurements for low charges at FLASH
 - Laser2
 - Laser3
 - solenoid scan
 - Challenges for low charges
 - Comparison for identical machine settings

influence of injector laser pulse duration at 20pC

ASTRA simulations for 20pC

From simulation: Reduction of bunch length by factor 3-5 doesn't increase the transverse emittance

- If this is the case, short pulse laser is well suited for low charge, short bunch operation
- Has to be verified by measurements!

Longitudinal Phase Space Distribution after the Gun

Laser2 (15ps FWHM)

-10

11

10

Longitudinal Phase Space Distribution after the Gun

simulation of solenoid scan

10 ps (FWHM)

2.4 ps (FWHM)

ASTRA simulations for 20pC

- Generation of extremely short SASE pulses at FLASH
 - Why do we need a short pulse injector laser (Laser3)?
- Influence of the injector laser pulse durations on electron bunch parameters for low charges
 - Simulation results
- Emittance measurements for low charges at FLASH
 - Laser2
 - Laser3
 - solenoid scan
 - Challenges for low charges
 - Comparison for identical machine settings

Emittance measurement laser2

Measurement 2012/11/14

-0.08

LASER-2, BSA=0.5mm, 20pC, Isol=-317.0A 12 bunches

Expected from simulation: 0.20 mm mrad

Measurements with 20pC: No signal at BPMs \rightarrow very time consuming

 \rightarrow more recent measurements have been performed with higher charge

- Generation of extremely short SASE pulses at FLASH
 - Why do we need a short pulse injector laser (Laser3)?
- Influence of the injector laser pulse durations on electron bunch parameters for low charges
 - Simulation results
- Emittance measurements for low charges at FLASH
 - Laser2
 - Laser3
 - solenoid scan
 - Challenges for low charges
 - Comparison for identical machine settings

Matching

Measurement 2013/12/22

Matching works only in a narrow window between 310 -315 A

→ It was not possible to perform the planned solenoid scan to the expected minimum

Still, very small emittance values have been measured

Solenoid scan

Measurement 2013/12/22

LASER-3: 2ps (FWHM) Bunch charge: 30pC BSA: 0.4mm

Expected emittance from the simulation: Approx. 0.36 mm mrad for 30 pC

Tiny spot sizes

Measurement 2013/12/22

Influence of the number of bunches used for the measurement

Measurement 2013/12/22

LASER-3, 2ps FWHM, BSA=0.4, 30pC, Isol=312.5A

10 bunches

horizontal

vertical

-1.32

1.14

-0.05+0.09

-0.08

0.62

2.41

2.76

1.28

1.15

Influence of the number of bunches used for the measurement

(60.85590um RMS ver)

(51.39um RMS ver)

LASER-3, 2ps FWHM, BSA=0.4, 30pC, Isol=312.5A

10 bunches

Expected from simulation: 0.37 mm mrad 4DBC2 (60.6082um RMS hor) 6DBC2 (62.343um RMS hor) (74.5993um RMS ver) (85.4603um RMS ver) 8DBC2 (56,8679um RMS hor) 10DBC2 (63.2388um RMS hor) 62.4447um RMS ver) 68:2672um RMS ver) emittance alpha beta BMAG

+0.06

-0.05 +0.09

-0.08

-1.32

1.14

2.41

2.76

1.28

1.15

0.46

0.62

horizontal

vertical

Measurement 2013/12/22 LASER-3, 2ps FWHM, BSA=0.4, 30pC, Isol=312.5A

1-2 bunches

	emittance	alpha	beta	BMAG
horizontal	0.34 ^{+0.06} -0.05	-1.15	2.19	1.24
vertical	0.43 ^{+0.09} -0.08	1.02	2.83	1.32

vnected from simulation: 0.37 mm mrad

Influence of the number of bunches used for the measurement

1-2 bunches

Measurement 2013/12/22

LASER-3, 2ps FWHM, BSA=0.4, 30pC, Isol=312.5A

+0.09

-0.08

1.02

2.83

1.32

0.43

vertical

LASER-3, 2ps FWHM, BSA=0.4, 30pC, Isol=312.5A

+0.09

-0.08

1.14

2.76

1.15

0.62

vertical

10 bunches

Expected from simulation: 0.37 mm mrad Expected from simulation: 0.37 mm mrad 4DBC2 (60.6082um RMS hor) 6DBC2 (62.343um RMS hor) 4DBC2 (48.0296um RMS hor) 6DBC2 (52.9996um RMS hor) 74.5993um RMS ver) (85.4603um RMS ver) (00.8536um RMS ver) (76.9325um RMS ver) 8DBC2 (56,8679um RMS hor) 10DBC2 (63.2388um RMS hor) 8DBC2 (50.6663um RMS hor) 10DBC2 (54.7223um RMS hor) 62.4447um RMS ver) 68.2672um RMS ver) RMS ver) RMS ver) 39um | .946um For many bunches, the emittance can be about 40% larger! emittance alpha **BMAG** beta emittance alpha beta BMAG +0.06+0.060.34 0.46 horizontal -1.15 2.19 1.24 horizontal -1.32 2.41 1.28 -0.05-0.05

Comparison of Laser2 and Laser3 at identical machine settings

LASER-2: 15ps FWHM

BSA=0.4mm, 30pC, Isol=310.4A, 1-2 bunches

Expected from simulation: 0.25 mm mrad

	emittance	alpha	beta	BMAG
horizontal	$0.15 \begin{array}{c} +0.18 \\ -0.10 \end{array}$	-2.13	2.87	2.19
vertical	$0.26 \begin{array}{c} +0.31 \\ -0.16 \end{array}$	2.02	4.05	1.62

Measurement 2013/12/22

Comparison of Laser2 and Laser3 at identical machine settings

LASER-2: 15ps FWHM

BSA=0.4mm, 30pC, Isol=310.4A, 1-2 bunches

Expected from simulation: 0.25 mm mrad

	emittance	alpha	beta	BMAG
horizontal	$0.15 \begin{array}{c} +0.18 \\ -0.10 \end{array}$	-2.13	2.87	2.19
vertical	$0.26 \begin{array}{c} +0.31 \\ -0.16 \end{array}$	2.02	4.05	1.62

LASER-3: 2ps FWHM Measurement 2013/12/22

BSA=0.4mm, 30pC, Isol=310.4A, 1-2 bunches

Expected from simulation: 0.37 mm mrad

	emittance	alpha	beta	BMAG
horizontal	$0.15 \begin{array}{c} +0.19 \\ -0.10 \end{array}$	-2.29	3.11	2.26
vertical	$0.25 \begin{array}{c} +0.33 \\ -0.16 \end{array}$	1.83	5.06	2.14

conclusion

- Single spike SASE radiation at FLASH requires
 - low charges
 - short laser pulse duration at injector
- Very small emittance has been demonstrated for low charge
 - Comparable for long and short laser pulses (30pC)
 - \rightarrow supports simulation results
 - Error bars still large due to matching + sensitivity of screens
- Emittance measurement for low charges with screen method
 - \rightarrow requires a more sensitive screen/camera

outlook

- Systematic study of influence of number of bunches on emittance measurements
- Confirm the comparison between lasers 2 & 3 by more measurements (better BMAG, statistics)
- bunch length measurements in BC2

Thank you for your attention!