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Motivation (I)

XFEL

so The electron trajectory through undulators less than a few um is required

over a gain length for strong overlap between particle orbit and radiation
cone in the XFEL undulators.

s Conventional alignment technique is not enough — beam-based alignment
(BBA) with different beam energies is used.
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Motivation (1l

XFEL
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Figure 3: Saturation power (top) and saturation length
(bottom) versus beam 1initial space (left) and angular

(right) offsets. V. Khachatryan, Proceedings of EPACOS8, Genoa, Italy

s  Steady-state simulation of the radiation process at the XFEL SASE1 was presented by V.
Khachatryan in 2008. The impacts of the initial offset and quadrupole misalignment were
investigated.

o Time-dependent simulations of the radiation process are needed for more precise results in
XFEL SASE1.
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BBA implementation

European

- L(LS method - (H. Loos/SIA() XFEL

1.  Make response matrices for 4 different beam energies
(4.0, 10.0, 14.5, 17.5 GeV)

Save BPM readings for each energy

3. Calculate quadrupole & BPM offsets with SVD — set to
new positions for quadrupoles and correct the offsets for
BPMs

4. Linear fit from corrected offsets — correct launch position
& angle

5. Steer BPM readings to remove remaining small
oscillations using a minimum number of quad-movers

6. Repeat above steps until saturation
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Beam positions at BPMs
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with launch condition & errors XFEL

AQ,
= LRME]_ p + ORME]_ . + I ) +

: AQpm : :
Xn ABn fn

Parameter | ________________JPaameter |_____________

Transverse position at BPM i (xg, x'¢) Transverse launch condition
LRM Launch response matrix ORM Orbit response matrix
n # of BPMs m # of quadrupoles
AQ Quadrupole offset AB BPM offset

& BPM resolution error



s Simulation code : Elegant

so Errors

o BPM rms resolution : 1 um (£10)
o BPM rms offset: 100 um (+30)
o QUAD rms offset : 100 um (+30)

s Fixed quadrupole field
so Simulations for 100 random seeds
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@ Beam-based alignment simulation iy
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% Orbit size with BPM & quadrupole errors Europear

XFEL
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% Orbit trajectory, quadrupole position, and BPM reading 1
during 3 iterations at 17.5 GeY XFEL
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@ verage orbit size during 3 iterations a Buseer
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% Average orbit size aiter 3 iterations |
at three beam energies XFEL

Average orbit for 100 random seeds
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Rms orbit size is about 1-2 um after 2 or 3 iterations.
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@ Start-to-end simulation —
for radiation process at SASF1 XFEL

s Simulations
o Bunch charge: 1 nC
o Macro-particles : 200,000

o Programs:
Astra Gun - ACC1
Elegant After ACC1 - before SASE1 (CSR, LSC, no wake)
Genesis SASE1

o RF settings :

145.0 90-54 4.1 90 + 166.0 574.6 90 -79 2000.5 90 - 31.8



Longitudinal phase space & beam current
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X 10'3 Phase space Current, emittance, energy spread
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Average radiation energy & power Europear

XFEL
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Average radiation energy & power
with orbit after BBA
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Average radiation power with 1
initial x-ofiset & quad-misalignment XFEL
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Summary

XFEL

so> Achieved

o Beam based-alignment technique of LCLS was applied to the XFEL
SASE1.

o Rms orbit size decreased to about 1-2 um after 2 ~ 3 iterations for 100
um (£3) BPM- and quadrupole-offset errors.

o Time-dependent simulation of the radiation process was performed in
SASE1. Average radiation power was strongly dependent on initial x-
offset and quadrupole misalignment.

so 10 doO

o To include other errors (quadrupole gradient error, mover calibration
error etc.)

o To study the radiation process at low charges

o To apply this method into FLASH undulators. Last month BBA
experiment was performed in FLASH with M. Vogt. However the lattice
which was used in calculation was wrong in some parts. Therefore new
experiment will be done in Aug. or later 2013 with the revised data.

Thank you for your atiention



