
Overview of xcode

21.05.2013

Overview of xcode

Ilya Agapov

Overview of xcode

21.05.2013

Original motivation: spontaneous radiation

 Need for diagnostics, power loads and potentially science cases

 Numerical methods well understood, single particle solver provided by O. Chubar
(SRWlib)

 Issues for xfel.eu: long undulators, narrow UR bandwidth, need to account for:
electron optics, emittance, energy spread

 SASE1 (0.05nm), energy spread effect

SASE1 (0.05nm), emittance effect on rad spot after mono

Effect of orbit distortion, flash

SASE1, emittance effect

Overview of xcode

21.05.2013

Along the way: need beam dynamics module

Need:

 Beam optics model to account for emittance effects

 Matching (not to rely on external optics)

 Alignment errors, beam jitter to see effect on SR

 Orbit correction and steering (bumps and the like, no DFS)

Flash-like optics, effect of misalignment

SASE3 optics

Overview of xcode

21.05.2013

PBBA: need 'on-line tools'

 Main motivation of SR is for diagnostics

 Tuning undulator K and phase shifter based on SR properties

 Any study cases should be easily transferrable to the control room

mono
steerers

phase
shifter

quad
Undulator with tunable gap

SR properies for various phase
shifter strengthes

Overview of xcode

21.05.2013

Emerging concept: software framework

E.g.: HEP, detector simulations (Geant4)

 Complex geometries

 Diverse physics

 Large collaborations

 On-line event displays

For accelerator physics some attempts are known. However, we would need
something simple, with the following features:

 Geometry: simple and extensible. MAD is not extensible, XML not simple. choose
python. Can easily extend e-optics model to: aperture info, x-ray optics

 Scripting: python library the best choice

 Physics modules should be plugged in using the same model and IO

 Extension to on-line tools should be easy (Karabo is in python)

 Xframework supports these features, many are implemented, some tbd.

Overview of xcode

21.05.2013

Xcode/xframework

 'xframework' refers to the common framework + integrated modules, the
distribution incuding 3rd part codes (srw, genesis) is referred to as 'xcode'

 Open source https://code.google.com/p/xfel-xcode/

 SVN, unit tests, otherwise 'agile development'

 1Yr in development

Overview of xcode

21.05.2013

FEL simulations

 Automatically generating genesis input from standard xframework decks,
easy controls of run parameters

 Postprocessing tools for genesis: I/O and statistical analysis

 1D python fel model

 Optimization routines and parameter scans (python)

Radiation parameters of SASE3, with postprocessing GUI
(left)

Overview of xcode

21.05.2013

SR

 SRW solver (O.Chubar and P.Elleaume, "Accurate and Efficient Computation
of Synchrotron Radiation in the Near Field Region",EPAC-98)

 Based on the same e beamline model. Standard xframework components
from which radiation can be caluclated: undulators with arbitrary polarization
(analytical models and tabulated fields), quads, dipoles, sextupoles.

 Other solvers included (e.g. Monte-Carlo photon generator, bottom left)

 Solvers interchangeable

 Benchmarks are/have been done, as well as calculations for xfel with all
effects (bottom right)

 SRW also allows for x-ray optics calculations. x-ray optic components (and
particularly their placement) have not been standardized on xframework
level,but direct access to appropriate srw functionality is always possible

Overview of xcode

21.05.2013

Beam optics

 Completely embeddable and extensible e optics module – not an optics code

 Standard optics calculations included in distribution as scripts

 Embeddable: call from any python code

 Extensible: user can define new elements, redefine transfer maps and attach

any additional features to beam elements w/o changing the module

 Features beyond single-particle electron dynamics can be added as
extensions (no collective effects so far)

Overview of xcode

21.05.2013

Example of DA calculations @ Siberia2
(S.Tomin)

DA without ID

Optical functions of „standard“ structure
(εx=98 nm rad)

Main parameters of IDs

Siberia-2 and proposed layout of
insertion devices

Overview of xcode

21.05.2013

Example of DA calculations @ Siberia2
(S.Tomin)

DA with single 3T wigglerDA with 7.5 T wiggler

DA 2.5mm gap undulator DA with all IDs (Runge-Kutta)

Overview of xcode

21.05.2013

Radiation parameter database?

 Have python repos for SASE1/2/3 and FLASH undulator sections (derived
from MAD), and partially undulator field maps

 Component XLS files translator prototype in place (Igor Zagorodnov)

 Simulation output dump on mass storage (dcache) + SQL index DB is
foreseen (prototype in place)

 However: need to define the scope

 Motivation : communicating photon beam parameter to users

 These parameters can be corrected from operation experience

 With a bit of programming python functionality easily put on-line (e.g.
https://www.djangoproject.com)

 Beyond simple parameter presentation, can potentially aim at correlation
studies and data mining.

https://www.djangoproject.com/

Overview of xcode

21.05.2013

On-line tools

 OM (LHC): embedding mad-x into java control system (pic below). Successful for
commissioning, however software complexity and support is an issue

 Machine Interface module in xframework allows for a 'flight simulator mode' of
operation (TCP-based): alignment and tuning tools could be easily transferred to
control room after switching from 'virtual' to 'real' mode. Similar things have been
implemented in several labs already.

 Flight simulator mode requires data exchange protocol. Optics and other features can
be more easily 'embedded' in python directly

 Scripting is a major advantage for scans etc. Python used at NSLSII too.

LHC OM beams at Ips
LHC OM Aperture scan

Overview of xcode

21.05.2013

Pipelining/interleaving simulations

 LHC collimation: (SixTrack/FLUKA)

 CLIC Beam Delivery collimation: Wakefields + secondaries (BDSIM/PLACET)

 XFEL Beam Dynamics: space charge, CSR, wakefields, etc....

 Always reinventing protocols to exchange data between codes; different physics
can be included only iteratively, not on small time steps

 Open python library can provide much simpler solution to the problem

From Tracking Studies of CLIC
Collimation system
Agapov et al PRST-AB (2009)
Wakefields calculated with GdFidl, beam core tracked with
PLACET and the halo with BDSIM. In this case wakefields
Have negligible effect.

Overview of xcode

21.05.2013

GUIs

 Integration of all functionality into user Qt interfaces easy, some prototypes
for FEL and SR in place. Usable software is more of an issue.
 Would need extra software engineers to write GUIs properly

Overview of xcode

21.05.2013

Input decks

 No parsing needed
 Current input decks are derived from official MAD decks and included in repo

beam = Beam()
beam.E = 17.5
beam.sigma_E = 0.001
beam.I = 2.5e-10
beam.emit_x = 1.752e-11
beam.emit_y = 1.752e-11
beam.beta_x = 33.7
beam.beta_y = 23.218
beam.alpha_x = 1.219
beam.alpha_y = -0.842

und = Undulator(nperiods=73, lperiod=0.068, Kx=0.0, id = "und")
d2 = Drift (l=0.45, id = "d2")
phase shifter
b1 = RBend (l=0.0575, angle=0.0, id = "b1")
b2 = RBend (l=0.0575, angle=-0.0, id = "b2")
psu=(b1,b2,b2,b1)
quads
qf = Quadrupole (l=0.1, id = "qf")
qd = Quadrupole (l=0.1, id = "qd")

cell_ps = (und, d2, qf, d2, und, d2, qd, d2)
sase3 = (und, d2, qd, d2) + 11*cell_ps

Overview of xcode

21.05.2013

Embedding python is simple

 Twiss calculation

exec(open("../../repository/flash/flash.inp"))
tw0 = Twiss(beam)
lat = MagneticLattice(flash_sase, beam.E)
tws=twiss(lat, tw0)

 Running a SR calculation and saving into hdf5

 traj, int1 = srw.calculateSR_py(lat, beam, screen, runParameters)

 dump = Dump()
 dump.readme = 'test 1_1'
 dump.index['beam'] = beam
 dump.index['screen'] = screen
 dump.index['intensity'] = int1
 dump.index['trajectory'] = traj

 xio = XIO('data/int_test_1_1.h5')
 dump.dump(xio)

Overview of xcode

21.05.2013

Summary and questions

 Have a python module supporting beam optics, SR, and FEL calculations

 However: development stage of many components is beta/prototype. To
produce high quality software, will need to sync with the needs of other XFEL
groups

 Some functionality is within our research needs, but many options are open:

 Interface to S2E?

 On-line tools?

 Parameter database?

 Additional beam physics?

 No entities beyond necessity

 Opportunity for information exchange from linac down to photon beamlines

 We are willing to collaborate and embrace new ideas

	Overview of xcode Ilya Agapov
	Original motivation: spontaneous radiation
	Along the way: need beam dynamics module
	PBBA: need 'on-line tools'
	Emerging concept: software framework
	Xcode/xframework
	FEL simulations
	SR
	Beam optics
	Example of DA calculations @ Siberia2 (S.Tomin)
	Slide 11
	Radiation parameter database?
	On-line tools
	Pipelining/interleaving simulations
	GUIs
	Input decks
	Embedding python is simple
	Summary and questions

