Supersymmetric AdS and Bubble Solutions

JPG, N. Kim, D. Waldram

JPG, O. Mac Conamhna, T. Mateos, D. Waldram
1. Classify most general supersymmetric AdS backgrounds of string/M-theory: most general dual SCFTs

2. Construct explicit solutions

- Interesting class of geometries.
 e.g. a-maximisation
- M-theory examples give novel SCFTs
- Rich sets of new explicit solutions
 e.g. \(Y^{p,q} \) Sasaki-Einstein (JPG, Martelli, Sparks, Waldram)

- Can deform CFT to get different dynamics in IR
- Can wick rotate \(\rightarrow \) “BPS bubbles” dual to smooth BPS states of SCFTs (LLM)
Consider warped products:

\[ds^2 = e^{2A(y)}[ds^2(AdS) + ds^2(M)(y)] \]

with fluxes preserving isometries of \(AdS \)

Classify geometries using \(G \)-structures. Have classified most general:

D=11:
- \(AdS_5, \; N = 1, 2 \)
- \(AdS_4, \; N = 1, 2 \)
- \(AdS_3, \; N = (4, 0), (2, 0)_I, (2, 0)_{II} \)

Type IIB
- \(AdS_5, \; N = 1 \)

Consider them as special cases of Minkowski space solutions
Special Case I: Sasaki-Einstein

Type IIB sugra:

\[ds^2 = ds^2(AdS_5) + ds^2(X_5) \]
\[F_5 = (1 + \ast)Vol(X_5) \]

where \(X_5 \) is Sasaki-Einstein.
Dual to N=1 SCFT in D=4.

D=11 sugra:

\[ds^2 = ds^2(AdS_4) + ds^2(X_7) \]
\[G_4 = Vol(AdS_4) \]

where \(X_7 \) is Sasaki-Einstein.
Dual to N=2 SCFTs in D=3.
X_{2n+1} is SE iff the cone metric
\[dr^2 + r^2 ds^2(X_{2n+1}) \]
is Ricci-flat Kähler.

Locally, a SE metric can be written
\[ds^2(X_{2n+1}) = (d\psi + P)^2 + ds^2(B_{2n}) \]
where B_{2n} is Kähler and Einstein with positive curvature and $dP = \mathcal{R}$.

Explicit examples:

\(D = 5 \): $Y^{p,q}$, $L^{a,b,c}$.
Dual SCFTs identified. Toric geometry, quiver gauge theories, dimer models, a-maximisation.....

\(D = 7 \) examples: dual SCFTs obscure.

Constructions of SE metrics extend to all odd dimensions.
Special Case II: Main Focus

AdS$_3$ in Type IIB sugra:

\[
 ds^2 = e^{2A}[ds^2(AdS_3) + ds^2(Y_7)] \\
 F_5 = (1 + \ast)Vol(AdS_3) \wedge F_2
\]

Dual to N=(0,2) SCFTs in D=2.

AdS$_2$ in D=11 sugra:

\[
 ds^2 = e^{2A}[ds^2(AdS_2) + ds^2(Y_9)] \\
 G_4 = Vol(AdS_2) \wedge F_2
\]

Dual to N=2 SCQM.

Locally, metrics can be written *(Kim)*

\[
 ds^2(Y_7) = \frac{1}{4}(dz + P)^2 + e^{-4A}ds^2(B_6) \\
 ds^2(Y_9) = (dz + P)^2 + e^{-3A}ds^2(B_8)
\]

where B_{2n} is Kähler and satisfies

\[
 \square R - \frac{1}{2}R^2 + R_{ij}R^{ij} = 0 \quad (*)
\]

with $dP = \mathcal{R}$ and $R > 0.$
1/8 BPS Bubbles:

Type IIB sugra:

\[ds^2 = e^{2A} \left[-\frac{1}{4} (dt + P)^2 + ds^2(S^3) + e^{-4A} ds^2(B_6) \right] \]

\[F_5 = (1 + \ast) Vol(S^3) \wedge F_2 \]

D=11 sugra:

\[ds^2 = e^{2A} \left[-(dt + P)^2 + ds^2(S^2) + e^{-3A} ds^2(B_8) \right] \]

\[G_4 = Vol(S^2) \wedge F_2 \]

Again \(B_{2n} \) is Kähler and satisfies

\[\Box R - \frac{1}{2} R^2 + R_{ij} R^{ij} = 0 \quad (\ast) \]

with \(dP = \mathcal{R} \) and now \(R < 0 \).

Generalise the 1/2 BPS configurations of LLM.
3 constructions of Kähler manifolds satisfying (*). Focus on IIB examples.

Construction 1

Line bundles over Kähler-Einstein

Inspired by construction of $Y^{p,q}$

$$ds^2(B_{2n+2}) = \frac{1}{x} \left[\frac{dx^2}{4x^2U} + U(D\phi)^2 + ds^2(KE_{2n}^+) \right]$$

$ds^2(KE_{2n}^+)$ Kähler-Einstein positive curvature.

$D\phi = d\phi + B$ with $dB = 2J_{KE}$.

This is locally Kähler (Page, Pope).

Demand it is Einstein: \rightarrow Sasaki-Einstein in all odd dimensions including $Y^{p,q}$ in $D = 5$ (JPG, Martelli, Sparks, Waldramm)
Demand that it solves (*): Second order ODE for $U(x)$. Polynomial solutions → infinite new classes of AdS and bubble solutions.

AdS Solutions ($R > 0$):

AdS_3 in Type IIB sugra:

$$ds^2 = e^{2A}[ds^2(AdS_3) + ds^2(Y_7)]$$

with globally defined

$$ds^2(Y_7) = \frac{1}{4}(dz + P)^2 + e^{-4A}ds^2(B_6)$$

Note: B_6 depends on KE_4^+ which must be $S^2 \times S^2$, CP^2 or dP_k, $k = 3, \ldots, 8$.

Isometries of Y_7:

e.g. for $KE_4 = CP^2$: $U(1) \times U(1) \times SU(3)$. Cohomogeneity one.
BPS Bubbles and superstars \((R < 0)\)

Type IIB sugra:

\[
ds^2 = e^{2A} \left[-\frac{1}{4}(dt + P)^2 + ds^2(S^3) + e^{-4A}ds^2(B_6) \right]
\]

D=5 minimal gauged sugra: there exist singular, charged BPS solutions ("black holes") that asymptote to \(AdS_5\). These have an \(S^3\) factor.

Can be uplifted to solutions of type IIB sugra: the charge becomes \(SO(6)\) "angular momentum" on the \(S^5\): the "superstar" is a collection of giant gravitons rotating equally along three \(U(1)\)'s of \(S^5\).
Construction 2

Type IIB sugra:

Using $D = 5$ gauged sugra coupled to vector multiplets, can construct $D = 10$ superstar solutions with three different $U(1)$ charges.

View them as BPS bubbles: extract out Kähler geometry and use it to construct new AdS_3 geometries.

Explicit metric

Y_7 has 4 $U(1)$ isometries: co-homogeneity three.

Previous construction, for $KE_4 = CP^2$, is a special case: isometries were $U(1) \times U(1) \times SU(3)$.
Construction 3

Kähler manifold is product of KE:

\[ds^2(B_{2n+2}) = \sum_{i=1}^{n+1} ds^2(KE_2^{(i)}) \]

where \(KE_2^{(i)} \) can be

\(T^2: \ l_i = 0; \)

\(S^2: \ l_i = 1; \)

\(H^2/\Gamma: \ l_i = -1; \)

If two \(l_i \) equal can replace with \(KE_4 \)

\((*) \) is solved if:

\[\sum_{i=1}^{n+1} l_i^2 = \left(\sum_{i=1}^{n+1} l_i \right)^2 \]
Type IIB \(AdS_3 \) solutions:
One parameter family

Interesting special case: \(B_6 = (H^2/\Gamma) \times KE_4^+ \)

Solution is:
\[
ds^2 = ds^2(AdS_3) + \frac{3}{4} ds^2(H^2/\Gamma) \\
+ \frac{9}{4} \left[ds^2(KE_4^+) + \frac{1}{9}(dz + P)^2 \right]
\]

If \(KE_4^+ = CP^2 \) this describes a D3-brane wrapping a holomorphic \(H^2/\Gamma \) in a \(CY_4 \) (Maldacena,Nunez; Naka)

Also BPS Bubbles.
Very rich class of supersymmetric AdS_3, AdS_2 and bubble solutions - much to explore.

Dual SCFTs:
Focus on type IIB AdS_3 solutions. Simplest solutions: flux quantisation implies that the solution depends on p, q with $p|q = 1$. Also depends on a choice of KE_4^+. Central charge:

$$c = \frac{9pq^2(p + mq)}{3p^2 + 3mpq + m^2q^2} \frac{Mq}{m^2h^2} n^2,$$

where M, m are fixed by choice of KE_4^+ eg for CP^2, $m = 3, M = 9$. Also, $h = h.c.f.(M/m^2, q)$.

Given the underlying geometry has some similarity with Sasaki-Einstein spaces ($Y^{p,q}$) perhaps the SCFTs are related?