The BESIII experiment at BEPCII

Changzheng Yuan IHEP, Beijing (for the BESIII Collaboration)

> QWG workshop Oct. 17-21, 2007, Hamburg

The Beijing Spectrometer (BESI/II) at BEPCI

airport

W is H

4th Ring Road

牡丹园

西直门

马氨

大钟号

航天桥

公主党

IHEP, Beijing

1989-2005 Ecm=2-5 GeV L_{peak}=10x10³⁰/cm²s @ 3.7 GeV

BEPC II Storage ring: Large angle, double-ring

Beam energy: 1.0-2.1 (2.3)GeV Magnet, RF power Luminosity: 1×10³³ cm⁻²s⁻¹ **Optimum energy:** 1.89 GeV **Energy spread:** 5.16 ×10-4 No. of bunches: 93 **Bunch length:** 1.5 cm **Total current: 0.91** A SR mode: 0.25A @ 2.5 GeV

Physics at BEPCII/BESIII

- Precision measurement of CKM matrix elements
- Precision test of Standard Model
- QCD and hadron production
- Light hadron spectroscopy
- Charmonium production/decays

A review book on "tau-charm physics at BESIII"

- ~ 800 pages, to be completed this year (great contribution from QWG members!)
- Search for new physics/new particles

Physics at BEPCII/BESIII

Statistics at BESIII at peak Luminosity (assuming 10⁷s data taking time each year)

Physics	Energy (GeV)	Peak Luminosity (10 ³³ cm ⁻² s ⁻¹)	Events/year	Existing data
J/ψ	3.097	0.6	10×10 ⁹	60×10 ⁶ (BESII)
τ	3.67(?)	1.0	12×10 ⁶	
ψ'	3.686	1.0	3×10 ⁹	27 ×10 ⁶ (CLEOc)
				14 ×10 ⁶ (BESII)
D	3.77	1.0	3×10 ⁶	5×10 ⁶ (CLEOc)
Ds	4.03	0.6	1×10 ⁶	4×10 ³ (BESI)
Ds	4.17	0.6	3×10 ⁶	0.3×10 ⁶ (CLEOc)
R scan	3.0-4.6	0.6(?)-1.0		 5

Current status of BEPCII/BESIII construction

Installation of linac was completed

Summary of the Linac commissioning

Parameters		Goal	Measured
Beam energy (GeV)		1.89	1.89 (e-); 1.89 (e+)
Deem ourrent (m A)	e ⁺	40	40 - 63
Beam current (mA)	e⁻	500	> 500
Repetition rate (Hz)		50	50
Emittance (1σ) (mm·mrad)	e ⁺	0.53	$0.32 \sim 0.20$
	e⁻	0.067	0.080 ~ 0.096
Enough sphered $(0/)$	e +	± 0.50	±0.73@1.30GeV (±0.50@1.89GeV)
Energy spread (%)	e⁻	± 0.50	<±0.80@1.30GeV <(±0.55@1.89GeV)

The BEPCII storage ring installation was completed in the beginning of Nov. 2006

Conventional magnets were installed at IR to start ring commissioning and SR operation

Milestone of BEPCII storage ring commissioning

- Nov. 2006 Beam commissioning start
- Nov. 2006 Beam was stored in the storage ring
- Dec. 2006 Accumulated beam ~ 6 A·hrs., beam life time ~ 1.5 hrs @ 60mA.
- **Dec. 2006** Start to provide SR beams for users
- Mar. 2007 First e⁺e⁻ collision, Lumi ~ 10^{30} cm⁻² s⁻¹ (normal Q) collision of 100 mA + 100 mA , lumi ~ 10^{31} cm⁻² s⁻¹
- June 2007 Provide SR beams for users at 2.5GeV,
 - 200 mA with a lifetime of 5.5 hr
- Aug. 2007 Beam current reached 500 mA
 - SCQ magnet mapped and now at the interaction region (was a serious problem) 11

Future plan

- Machine study will start on Oct. 24, 2007
- Another SR run is planed at the end of 2007
- By march 2008, luminosity shall reach ~10³² cm⁻² s⁻¹ and backgrounds acceptable
- The BESIII detector will be moved to the interaction region by March 2008
- The goal is that BEPCII should reach a lumi. around 3 ×10³² cm⁻² s⁻¹ by the end of 2008

CsI(Tl) calorimeter, 2.5 <u>%@1</u> GeV

- Drift chamber and its electronics (IHEP, Sichuan, Tsinghua)
- CsI(Tl) calorimeter and its electronics (IHEP, Tsinghua)
- TOF (IHEP, USTC, Tokyo, Hawaii)
- **TOF electronics** (USTC)
- **RPC** (IHEP, Uni. of Washington)
- **RPC electronics (USTC)**
- Trigger (IHEP, USTC)
- DAQ & online software (IHEP, Tsinghua)
- Offline software (IHEP, Peking, Shangdong, Nanjing)
- Superconducting magnet (IHEP, Wang NMR)
- Mechanics (IHEP)
- Technical support (IHEP, Tsinghua)

Drift chamber

- To measure the momentum of charged particles
- **Design spec.:** Single wire reso. dE/dx reso.

CLEO:	~110µm,	5.7%
Babar:	~110µm,	6.2%
Belle:	~130µm,	5.7%
BESIII	~120µm	6 %

- **R**_{in} = 63mm; **R**_{out} = 810mm; length = 2400 mm
- 7000 Signal wires: 25(3% Rhenium) µm gold-plated tungsten
- 22000 Field wires: 110 µm Al
- Gas: He + C_3H_8 (60/40)
- Momentum resolution@1GeV: 0.5%

All preamplifiers are mounted and tested

Cosmic-ray tests completed

BESIII CsI(Tl) crystal calorimeter

- To measure the energy of electromagnetic particles
- Barrel: 5280 crystals, Endcap: 960 crystals
- Crystal: (5.2x 5.2 6.4 x 6.4) x 28cm³
- Readout: ~13000 Photodiodes, 1cm×2cm,
- Energy range: 20MeV 2 GeV
- position resolution: 6 <u>mm@1GeV</u>
- Tiled angle: theta ~ $1-3^{\circ}$, phi ~ 1.5°

 Babar:
 2.67% @1GeV

 BELLE:
 2.2% @1GeV

 CLEO:
 2.2% @1GeV

 BESIII:
 2.5% @1GeV

CsI Calorimeter

Te: ·Siz ·So ·LE ·PD ·Pro	sting: ze urce tests (¹³ D tests tests eamp tests	³⁷ Cs)	
·Co	smic ray test	S	
·Be	am tests (6 ×	k 6 array	y):
	Energy reso	lution	(1GeV)
	$\sigma_{_{\rm F}} =$	2.62 %	
	position res	solution	(1GeV)
	7 -	- 6 mm	(1001)
	0 _{x-y} -	- 0 mm	
	[ht	emp
X	position 🔨	Entries Prob constant1 coast1	19941 1.7374-05 99818±15.0
	11	aigma1(cm) constant2 peak2	0.5544±0.0089 141.8±1.8 -1:497±0.098
	$I = I = \chi^{1}$	sigms2(cm)	1.748±0.088
		Varmenter	
	6 vi		0

Crystal production and tests completed

	France Sanit -Gobain	Shanghai Institute of Ceramics	Beijing Hamamatsu	Total
Ordered	2040(960)	1920	1320	5280(960)
Replaced	87(4)	316	79	482(4)

Crystal assembly completed

Barrel assembly completed

PID: Time-Of-Flight counters

• To measure the flight time of particles in order to identify them: m=P/(L/t)

High quality plastic scintillator: 2.4 m long, 5 cm thick

23

Test beam at IHEP: for various types of scintillators, thickness, wrapping materials, ...

24

Barrel

Test beam at IHEP: for various types of scintillators, thickness, wrapping materials, ...

Scintillator tests completed

- **PMT test completed at Tokyo University**
- Preparation for installation completed
- Monitor system by Hawaii University completed

µ system : RPC

- 9 layers, 2000 m²
- Special bakelite plate w/o linseed oil
- 4cm strips, 10000 channels
- Noise less than 0.1 Hz/cm²

Mass production ---- Bare chamber test

Test results after installation

Module size: 3800mm*1640mm Strip length: 3800mm Strip width: 33mm Average strip efficiency: 0.99 Spatial resolution: 14.2mm

Muon chamber installation completed

Super-conducting magnet: <u>1T@3400</u> A

Thermal insulation

transportation

The magnet reached super-conducting status and 1T magnetic field at 3364A. Field mapping with SCQ completed Aug., 07

Electronics

- Drift chamber: 6500ch, $s_t \sim 500ps$, $s_q \sim 5$ fc, 10bit ADC IHEP
- calorimeter: 6300ch,s_q ~ 0.5fc, 3×10bit ADC,noise < 1000ENC
- TOF: 500ch, $s_t \sim 20$ ps, 10bit ADC USTC
- RPC: 10000ch, bit map
- Prototype and beam test all meet the design spec.
- Mass production completed
- Some tested with full trigger/DAQ system

Trigger system hardware structure

From front electronics

DAQ & online software

Key technical issued solved(speed, network, CPU, etc...)

specification: ~ 50Mb/s, 4000 Hz, 10 ×B-factory, 1000 × BESII

Offline software system

Monte Carlo simulation

- **GEANT4 based simulation framework completed**
- Geometry, material and detector response completed
- Real detector response including 3D magnetic field, noise, trigger, bunch size etc completed
- All tested by reconstructed physics events
- Many generators, some are new for tau-chram physics
- Stable operation, large data sample generated

Event reconstruction and calibration

- Gaudi based framework completed
- Sub-detector reconstruction and calibration almost completed:
 - Kalman-filter based track fitting
 - Basic calibration algorithm established
 - No-bias Event reconstruction
 - Resolution in agreement with specification
 - Timing zero can be reconstructed
 - Secondary vertex can be reconstructed
 - Online event filter
 - Stable operation for physics studies

Inclusive γ spectrum in $\psi(2S)$ decays

Schedule

- 2/2003: Official approval of the project
- 7/2004: BESII detector shutdown
- 5/2005: Magnet yoke & muon chamber installation
- 9/2006: Super-conducting magnet cool down
- 8/2007: Magnetic field mapping finished
- <u>10/2007: EMC installation done</u>
- 10/2007: MDC/TOF installation starts
- 1/2008: Cosmic-ray tests
- 3/2008: BESIII detector in beam line
- Summer 2008: Start data taking (test run)

Barrel EMC installed in the yoke Now mounting barrel TOF to MDC, assembling endcap EMC

BESIII collaboration

- **BEPCII/BESIII construction is close to completion**
- **BESIII** assembly and installation will be finished this year, physics run will start next summer
- Physics and software preparation underway
- We are excited about the great physics opportunities at BESIII (will contribute a lot to Quarkonium Physics), and we welcome new collaborators

Thanks a lot!

What is the first running energy?

- Easy to collide (accelerator)
- High event rate (detector collibration)
- Good for physics

