The Y states in ISR & observation of $e^+e^- \rightarrow \Upsilon(1S)\pi^+\pi^-$, $\Upsilon(2S)\pi^+\pi^$ at Ecm=10.87 GeV

> Changzheng YUAN (for the Belle collaboration) IHEP, Beijing

QWG workshop, Hamburg

Oct. 17-20, 2007

Outline

- Introduction
- Part I: the Y states
 - $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
 - $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
 - $e^+e^- \rightarrow K^+K^- J/\psi$
- Part II: the Y_b states (c-quark \rightarrow b-quark)?
 - $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(1S)$
 - $e^+e^- \rightarrow \pi^+\pi^- \Upsilon(2S)$
 - $e^+e^- \rightarrow K^+K^- \Upsilon(1S)$
- Summary

The KEKB Collider

Part I: the Y states

Charmonium states in ISR production

PRL95, 142001 (2005)

 $\pi^+\pi^-J/\psi$ Mass

 >8σ significance structure called Y(4260)
 M(J/ψππ) of ψ(25) with J/ψ constraint is well described by Cauchy shape funct.

BaBar:

232 fb⁻¹

• fit with Rel-BW × PhaseSpace \otimes Reso + 2nd polynomial (BKGD) • fit-probability (χ^2) is about 2.6%, N_{events} = 125±23

$$m = 4259 \pm 8^{+2}_{-6} \text{ MeV}$$

$$\Gamma = 88 \pm 23^{+6}_{-4} \text{ MeV}$$

$$\Gamma(Y \rightarrow e^+e^-) \cdot B(Y \rightarrow \pi^+\pi^- J / \psi) = 5.5 \pm 1.0^{+0.8}_{-0.7} \text{ eV}$$

 $e^+e^- \rightarrow \psi$ ' as reference signal

N ^{obs}	Lum (/fb)	Cross section (pb)				
15,444	547.8	15.42±0.12±0.89				

- From cross section, one gets partial width to e⁺e⁻.
- $\Gamma_{ee} = 2.54 \pm 0.02 \pm 0.15 \text{ keV}$
- PDG'06
 - $-\Gamma_{ee}$ =2.48 ± 0.06 keV
- Belle agrees with other experiments well.

Good agreement between data and MC simulation. → (ISR events & background low & MC reliable)

Belle: C.Z.Y & C.P. Shen et al., arXiv:0707.2541, to appear in PRL

- Background subtracted
 M(J/ψππ) corrected for
 efficiency and
 differential luminosity
- $M_{\pi\pi}$ spectra in different \sqrt{s} regions:
 - $\sqrt{s} = 3.8 4.2$ & 4.4-4.6 GeV in agreement with 3-body phase space

- Y(4260) region $\sqrt{s} = 3.8$ -4.15 GeV: two clusters at low and high masses (scalars?)

Belle: C.Z.Y & C.P. Shen et al., arXiv:0707.2541, to appear in PRL

Fit with function Babar used. Similar results are got.

- Re-scattering ee $\rightarrow D^{(*)}D^{(*)} \rightarrow J/\psi\pi\pi$?
 - Another broad state ?
 - Check the latter hypothesis and influence of interference of Y(4260) with non-Y contribution:
 - Fit with 2 coherent BWs
 - Two- fold ambiguity in amplitude (constructive-destructive interference) + model uncertainty due to ψ' tail

Belle: C.Z.Y & C.P. Shen et al., arXiv:0707.2541, to appear in PRL

2-BW fit with interference better describes the data: Y(4260) parameters are different (especially peak cross section – large uncertainty)

$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via ISR at BaBar

BaBar: B. Aubert et al., PRL98, 212001 (2007)

- Polar angle distribution agrees well with ISR expectation
- Combinatorial background estimated by
 _ ψ' sidebands
- Backgrounds from real $(\psi'\pi\pi)_{non ISR}$ or $\psi' X_{non \pi\pi}$ are negligibly small

Two significant clusters: One is near BaBar reported enhancement PRL98, 212001 (2007) + NEW at M~ 4.7 GeV

Belle: X.L. Wang & C.Z.Y et al., PRL99, 142002 (2007)

Belle: X.L. Wang & C.Z.Y et al., PRL99, 142002 (2007)

$e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

- CLEO-c observed 3 K⁺K⁻J/ ψ at Ecm=4.26 GeV and assumed from Y(4260)
- Belle : first observation of $e^+e^- \rightarrow J/\psi K^+K^-$ and evidence for $e^+e^- \rightarrow J/\psi K_S K_S$

Belle: C.Z.Y & C.P. Shen et al., arXive:0709.2565

 $e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

KK invariant mass tends to be large!

Belle: C.Z.Y & C.P. Shen et al., arXive:0709.2565

 $e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

Belle: C.Z.Y & C.P. Shen et al., arXive:0709.2565

 $\pi^+\pi^- J/\psi$, $\pi^+\pi^-\psi(2S)$, and K⁺K⁻J/ ψ BELLE

Part II: the Y_b states?

Belle: arXiv:0710.2577 [hep-ex]

Belle has ~ 22 fb⁻¹ Y(5S) data, so we can do it!

I.

Y_b states as analogy to the Y(4260)? G. W. S. Hou: PRD **74**, 017504 (2006).

T(45) DECAY MODES				Υ (10860) DECAY MODES					
	Mode Γ ~ 20.5 MeV	Fraction (Γ_j/Γ)	Confidence level		Mode	Γ =	110 MeV	Fraction (Γ_i/Γ)	Confidence leve
1 2 3 4 5 6 7 8 9 10	$B\overline{B}$ $B^{+}B^{-}$ $D_{s}^{+} \text{ anything } + \text{ c.c.}$ $B^{0}\overline{B}^{0}$ non- $B\overline{B}$ $e^{+}e^{-}$ $\int/\psi(1S) \text{ anything}$ $D^{*+} \text{ anything } + \text{ c.c.}$ $\phi \text{ anything}$ $\phi \eta$	> 96 % (50.9 ±0.7)% (17.8 ±2.6)% (49.1 ±0.7)% < 4 % (1.57±0.08) × 10 < 1.9 × 10 < 7.4 % (7.1 ±0.6)% < 2.5 × 10	95% 95% 95% 90% 90%	$ \begin{bmatrix} \Gamma_1 \\ \Gamma_2 \\ \Gamma_3 \\ \Gamma_5 \\ \Gamma_6 \\ \Gamma_7 \\ \Gamma_8 \\ \Gamma_9 \\ \Gamma_{10} $	$e^{+}e^{-}$ $B\overline{B}X$ $B\overline{B}^{*} +$ $B^{*}\overline{B}^{*}$ $B\overline{B}(*)\pi$ $B\overline{B}\pi\pi$ $B_{s}^{(*)}\overline{B}_{s}^{(*)}(t)$ $B_{s}\overline{B}_{s}$ $B_{s}\overline{B}_{s}$ $B_{s}\overline{B}_{s}^{*} +$	Γ _{ee} ≏ c.c. ^π (X) ⊢ c.c.	• 0.13 keV	$(2.8 \pm 0.7) \\ (59 \pm 14) \\ < 13.8 \\ (14 \pm 6) \\ (44 \pm 11) \\ < 19.7 \\ < 8.9 \\ (19.5 \pm 3.0) \\ - 2.3 \end{pmatrix}$)×10 ⁻⁶)% % 90%)% % 90% % 90%
11 12 13 14	$\begin{array}{c} \Upsilon(1S) \text{ anything} \\ \Upsilon(1S) \pi^+ \pi^- \\ \Upsilon(2S) \pi^+ \pi^- \\ \hline d \text{ anything} \end{array}$	$ < 4 \times 10 \\ (9.0 \pm 1.5) \times 10 \\ (8.8 \pm 1.9) \times 10 \\ 1.3 \times 10 \\ $)3)-5)-5)-5 90%	Γ ₁₁	$\Gamma_{11} \qquad B_s^* \overline{B}_s^*$ Inclusive Decays. These decay modes are submodes of one or more of the decay modes above.				ecay modes
	PHYSICAL REVIEW D 75, 071103(R) (2007) 3rd peak $Y(4S) \rightarrow Y(1S)\pi^*\pi^-$ 5000 20 4777 fb ⁻¹	20	.5	Γ ₁₂ Γ ₁₃ Γ ₁₄ Γ ₁₅	ϕ anything D^0 anything D_s anything D_s anything J/ψ anything J/ψ	g ing + c.o ng + c.o hing	C.	(13.8 + 2.4 - 1.7) (108 ± 8) (46 ± 6) (2.06 ± 0.21)) %) %) %
	E 15 10 5 0 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.22 0 0 0 0 0 0 0 0 0 0 0 0 0	11	0		~	1.7	x 10 ⁻⁵	t limits	only

$\Upsilon(4S) \rightarrow \Upsilon(1S) \pi^+ \pi^-$ Template

$\Upsilon(3S) \rightarrow \Upsilon(1S) \pi^+ \pi^-$ Understanding

Event Selection for $\Upsilon(nS)h^+h^-$

• Track

Prompt: within 5 cm of IP in z (beam direction) 1 cm in transverse

• $\mu^{+}\mu^{-}$ + h⁺h⁻

Muon ID; loose $h = \pi$, K No other charged tracks with $p_T > 100 \text{ MeV/c}$

• $|M(\mu^+\mu^-) - M(\Upsilon(nS))| < 150 \text{ MeV/c}^2 (3\sigma) \Upsilon(nS)$ candidate

Main bkg : $\mu^+\mu^-\gamma \rightarrow \mu^+\mu^-e^+e^-$ that mimic $\Upsilon(1S)e^+e^-$ (conversion)

- cos θ_{ππ} < 0.95
 reject e[±] faking as π[±] Electron ID
- h = K case Kaon ID

Remark: Looser than $\Upsilon(4S) \rightarrow \Upsilon(1S) \pi^+\pi^-$ analysis Cross checks w/ $\Upsilon(4S)$ and $\Upsilon(3S)$

$e^+e^- \rightarrow \Upsilon(nS)h^+h^-at 10.87 \text{ GeV}$

BELLE

" $\Upsilon(5S)$ " $\rightarrow \Upsilon(1S)\pi^+\pi^-, \Upsilon(2S)\pi^+\pi^-$

 $e^+e^- \rightarrow \Upsilon(1S)\pi^+\pi^-$

• Structure at ~ 0.84 GeV/c² below 3S: " $\Upsilon(5S)$ " $\rightarrow \Upsilon(2S)\pi^+\pi^-$

- **հ** Ƴ(1S)+X
- some other reflection ?
- "
 "(5S)": single E_{CM} energy at 10.87 GeV No clear indication of radiative tail

Yield: Unbinned extended ML Fit

$M(\pi\pi)$ and $\cos\theta_{Hel}$ Distributions

Efficiency estimate: re-weighted MC according to data

N.B. other two modes use B-C model due to limited statistics

parameters!

Summary on Y(nS)h+h-

 \geq

> Need Scan to tell

- Observation of Y(4008), Y(4260), Y(4360),
 Y(4660) states in ISR data
- > Observation of $e^+e^- \rightarrow J/\psi K^+K^-$
- > Evidence for $e^+e^- \rightarrow J/\psi K_S K_S$
- ➢ Observation of e⁺e⁻ → Y(1S) $\pi^+\pi^-$, Y(2S) $\pi^+\pi^$ at Ecm=10.87 GeV
- ➢ Evidence for e⁺e⁻ → Υ(3S) π⁺π⁻, Υ(1S) K⁺K⁻ at Ecm=10.87 GeV

What is the nature of the Y states? How to understand the large $\Upsilon \pi^+ \pi^-$ cross section?

More information

Y(4260) in other experiments

Y(4260) in other experiments

Υ(5S): Systematic Uncertainty

Source	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(2S)\pi^+\pi^-$	$\Upsilon(3S)\pi^+\pi^-$	$\Upsilon(1S)K^+K^-$	
Tracking	4.1%	4.6%	5.6%	4.1%	
Lepton Ident.	1.0%	1.0%	1.0%	1.0%	
Electron rejection	0.2%	0.2%	0.4%	3.6%	
Fitting $\pi\pi$ model	1.5% 4.4%	3.7% 6.8%	1.7% 3.2%	1.4% 13.6%	
$M(\mu\mu\pi\pi)$ selection	2.6%	2.6%	2.6%	2.6%	
Bhabha rejection	1.9%	1.9%	1.9%	1.9%	
Trigger	0.9%	3.1%	4.5%	1.0%	
Luminosity	1.4%	1.4%	1.4%	1.4%	
Cross-section	5.0%	5.0%	5.0%	5.0%	
Υ(nS) → $µµ$ bf	2.0%	8.8%	9.6%	2.0%	
Total	9.0%	14.4%	14.0%	16.1%	

BELLE

<u>Corrected</u> $\Upsilon(4S) \rightarrow \Upsilon(1S) \pi^+ \pi^-$

Uncover from this study

- Data and signal yield correct
- Efficiency estimate for signal normalization was wrong

New preliminary Result:

$$Bf = 1.06^{+0.18}_{-0.17} \pm 0.09 \times 10^{-4}$$

 $\Gamma = 2.17^{+0.37}_{-0.35} \pm 0.33 \text{ keV}$

- Based on new data skim (112 fb⁻¹) w/ 4x efficiency
- Now consistent w/ BaBar

Revised publication coming soon

 $\Upsilon(5S)$ data

1985: CLEO, CUSB @ CESR ~ 116 pb^{-1}

2003: CLEO III @ CESR ~ 0.42 fb⁻¹

2005: Belle @ KEKB ~ **1.86 fb**⁻¹ engineering run 2006, June 9-31: Belle @ KEKB ≅ **21.9 fb**⁻¹