B_c & Upsilon at D0

Leah Welty-Rieger Indiana University Quarkonium Workshop 2007 DESY, Hamburg

Outline

- The Apparatus
 - The Tevatron
 - D0
- Upsilon physics and results
 - Polarization
- B_c physics & results
 - NEW! Lifetime

The Tevatron

• ppbar collider

1.96 TeV energy

• 45 mi west of Chicago

Delivered > 3.0 fb⁻¹

The two analyses
 presented here cover
 I.3 fb⁻¹

Collider Run II Integrated Luminosity

marathon, 6.5 miles around both rings

Great location to train for a

D0

Experiment

The D0 Detector

~600 scientists ~80 Institutions 20 countries

wear bright colors to show up!

The D0 Detector

- 2 Tesla Solenoidal Magnetic Field
- Excellent coverage
 - Muon system $|\eta| < 2$
 - Tracking system $|\eta| < 3$
- Uranium liquid Argon calorimeter
- Robust muon triggers

Silicon Microvertex Tracker

6 Central Barrels

- 8 Layers of Ladders
- Inner 4 barrels
 - All double-sided for 3D
 reconstruction
- Outer 2 barrels
 - Half of the layers double-sided
- 12 Central 'F' Disks
 - Double-sided
 - Radius : 2.6cm -10.0 cm
- 4 Forward 'H' Disks
 - Single-sided
 - Radius : 9.5cm 26 cm
 - Tracking out to $\sim \eta = 3$

5 micron point resolution

The Heart and Soul of B-Physics

Excellent large angle muon spectrometer and trigger

Drift tube tracking (slow) & 3 layers of scintillators for triggering (fast)

Upsilon Physics Outline

- Motivation
- Data Selection
- Extraction of Y signal in $\cos\theta^*$ bins
- Polarization of $\Upsilon(IS)$
- Polarization of $\Upsilon(2S)$
- Conclusions

Motivation

- NRQCD factorization developed to describe inclusive quarkonium production and decay
- Prediction of NRQCD is S-Wave quarkonium produced in ppbar collisions should be transversely polarized at high pT
 - Dominance of gluon fragmentation into quarkonium production at high p_T
 - Approximate heavy-quark symmetry of NRQCD

Motivation

• Convenient measurement of polarization :

$$\alpha = \frac{(\sigma_T - 2\sigma_L)}{(\sigma_T + 2\sigma_L)}$$

- σ_T : transverse polarized component of the cross section
- σ_L : longitudinal polarized component of the cross section
- When transverse polarization dominates, $\alpha \rightarrow +1$
- When longitudinal polarization dominates, $\alpha \rightarrow -1$

Motivation

 The variable 'α' fitted to the angular distribution of the positive lepton in the center of mass frame w.r.t. the momentum of decaying particle in the lab system :

\sim I+ α cos²(θ *)

J/W Polarization

 CDF measurements of prompt J/ψ, disagrees with NRQCD predictions in the high p_T region

Y(nS) Polarization Predictions

Quantitative calculations of the polarization for inclusive $\Upsilon(nS)$ mesons by NRQCD predictions for direct bottomonium production

(1)Transverse Polarization of $\Upsilon(1S)$ should increase steadily for p_T greater than 10GeV (2) The $\Upsilon(2S)$ and $\Upsilon(3S)$ should be even more strongly transversely polarized.

Data

- Full Runlla Data set
 - I.3 fb^{-I}
- Base selection cuts
 - Two muons of opposite charge
 - Associated track in central tracking system with hits in both the SMT and CFT
 - Each muon was observed in 3 layers of the muon system
 - _{PT}(μ) > 3.5 GeV

Extraction of Y signal

- Mass differences, $\Delta M_{\Upsilon(nS)}$, were fixed and taken from PDG.
- Background model is convolution of an exponential and a polynomial function.

•Degree of the polynomial was chosen between 1 to 6 depending on the complexity of the background shape.

10<pt(Y)<15 GeV 0.4<cosθ*<0.5

Extraction of Y Signal

→ Each bin of histogram is separate fit in the data.

Binned in $PT(\Upsilon)$

Correct Production of Υ

7<p⊤(Ƴ)<10 GeV

Monte Carlo does not correctly model p_T of Υ production

Weight $p(\Upsilon) & pT(\Upsilon)$ separately for agreement of data and MC.

Apply these weighting functions also to all other distributions

Correct Production of Υ

7<p⊤(Ƴ)<10 GeV

Monte Carlo does not correctly model p_T of Υ production

Weight $p(\Upsilon) & pT(\Upsilon)$ separately for agreement of data and MC.

Apply these weighting functions also to all other distributions

Determining A

7<p⊤(Ƴ)<10 GeV

After kinematic reweighting, scan different values of α in MC (original α =0) and minimize the χ^2 between the data and MC to obtain best value of α .

In this specific p_T bin, $\alpha = -0.42$

Y Systematics

Source	Error(α), all p _T intervals	p⊤ interval with the maximal error, [GeV]
Background approximation	0.04 - 0.21	0 - I
Signal Model	0.01 - 0.15	I - 2
MC (α dependence on Pt)	0.00 - 0.06	>15
MC (muon momentum reconstruction)	0.00 - 0.06	0 - 1
MC (trigger efficiency)	0.03 - 0.12	0 - 1

Results

Yellow band is NRQCD prediction

Points : D0 Data Green Triangles : CDF Results Strong longtudinal polarization at low pt.
 As pt increases, α increases, but not up to the NRQCD Predictions

Results

Y-Polarization Results

- Presented a measurement of the polarization of the $\Upsilon(IS)$ and $\Upsilon(2S)$ as a function of p_T from 0-20 GeV
- Significant <u>longitudinal (not transverse)</u> polarization that is dependent on p_T is observed for the Y(IS) that is <u>inconsistent</u> with NRQCD Predictions
- No contradiction to the NRQCD predictions for the $\Upsilon(2S)$ are observed

B_c Physics

- The B_c meson is the ground state of the bc system
- Unique in that it carries two heavy quarks
 - Each can decay quickly
 - Interesting System for HQET predictions
 - Charmonium & Upsilon have two of the same, where as B_c has one of each
- Flavor carrying particle → Study Heavy Quark Dynamics
- Predicted to have a shorter lifetime than other B hadrons

$$CDF: \tau(B_{c})=0.463^{+0.073}_{-0.065}(stat)\pm0.036 \ ps \longrightarrow PRL 97, 012002 \ 2006$$
$$D0: \tau(B_{c})=0.448^{+0.123}_{-0.096}(stat)\pm0.121 \ ps \longrightarrow Preliminary Only D0 \ Note \ 4483$$
$$Theory, e.g., 0.48 \ +/- \ 0.05 \ ps \ (OCD \ Sum \ Rules)$$

B_c Meson Lifetime

• Lifetime measurement in the J/ ψ + μ channel :

Lifetime Analysis Outline

• Data

- Sample
- Event Selection
- Contributions to the Data sample
- Demonstration of the B_c Signal
 - Presence of B_c
 - Demonstration of short signal lifetime
- Lifetime Analysis
 - Process
 - Results
- Conclusions

Data Sample

- Use all of the Runlla data set taken between 2002-2006
 - Corresponds to ~1.3 fb⁻¹ of data
- General Idea Two Sets of Data pulled out
 - J/ψ associated with any other track
 - J/ψ associated with a muon
 - Notice that this is a subset
- Then apply more stringent cuts on each sample

 ^{MU1} J/Ψ
 _{MU2}

Event Selection

Preselection

- $p(J/\psi) > 4$
- Each muon must have I hit in the SMT
 - µ₃ must have two
- p_T(μ₃)>2GeV
- $SV(\chi^2) < 100$
- J/ψ + μ χ² <49

Selection

- p_T(µ₃) > 3 GeV
- p(µ₃)>4 GeV
- p_T(J/ψµ) > 5 GeV
- $\chi^2 < |6$
- nseg(µ₃)=3
- Cos(θ) btwn any two muons <0.99
- Isctime(A)
- IP Biased Removed
- Angle btwn J/ψ & μ < I rad

Contributions

- Real J/ψ + Fake μ • J/ψ + Track Data • Fake J/ψ + Real μ J/ψ Sideband Data • Real $//\psi$ + Real μ
 - But each coming from different particle decays
 - J/ψ QCD Monte Carlo

- Prompt (i.e. J/ψ from cc(bar))
 - Negative Decay length J/ ψ + μ Data

B+

•
$$B^+ \rightarrow J/\psi + K^+$$

- Signal
 - B_c Signal Monte Carlo

Demonstration of Signal Cutting on Decay Length Significance

Demonstration of Short Decay Length Cutting on Proper Decay Length

10

10

Lifetime Analysis

Minimize the Log-Likelihood!

$$\mathcal{L} = \prod_{i} \left(f_{jtrk} F_{Jtrk}^{i} + (1 - f_{jtrk}) F_{Jmu}^{i} \right)$$

$$\begin{split} F_{Jmu}^{i} &= f_{SB} F_{SB}^{i} + \\ &(1 - f_{SB})(f_{sig} F_{sig}^{i} + f_{JMC}^{i} F_{JMC}^{i} + f_{Bp} F_{Bp}^{i} + \\ &(1 - f_{sig} - f_{JMC} - f_{Bp}) F_{PR}^{i}) \end{split}$$

Each component consists of a normalized PDF of lifetime and mass multiplied together and the total is minimized

Lifetime Analysis

$$\tau(B_c) = 0.444_{-0.036}^{+0.039}(stat)_{-0.034}^{+0.039}(sys) \ ps$$

 $N(Signal Events) = 856 \pm 85$ (stat)

Previous D0 Result

 $\tau(B_c) = 0.448^{+0.123}_{-0.095}(stat) \pm 0.121(sys) \ ps$

Current CDF Result

 $\tau(B_c) = 0.463^{+0.073}_{-0.065}(stat) \pm 0.036(sys) \ ps$

Systematics

- Decay model of Signal
 - Phase space instead of Isgur-Wise (ISGW2)
 - Changes signal mass model & K factor
- MC weighting
 - Changes signal, $\psi(2S)$, J/ ψ MC mass model & K factor
 - Vary $p_T(B_c)$ within theoretical uncertainties (vary scale μ)
- Alignment
 - Reconstruct the MC using a new geometry file where silicon sensors are moved around within alignment uncertainty (as in the B_s lifetime)
 - Measure the lifetime in each sample and find the difference between the two.
- J/ψ MC mass distribution
 - Use only events which originated from a B⁰ or B⁺
 - i.e. rough equivalent of large composition variations
 - Also covers uncertainty in $g \rightarrow bb(bar)$ measured by CDF
- B⁺ Mass distribution
 - Vary the background fit jn the B⁺ fit

- Sideband Mass distribution
 - Only left SB or only right SB
- Lifetime Models
 - Signal
 - Fix 's' at 1.2
 - Prompt
 - Single Gaussian instead of Double Gaussian
 - Sideband
 - Fix to $\pm I \sigma$
 - J/ψ MC
 - Values which are fixed within a Gaussian penalty function get new starting point at $\pm 1 \sigma$
 - B+
 - Fixed by Gaussian penalty function same as $J\!/\psi$ MC
 - Let lifetime fully float → fitted value consistent with PDG
 B⁺ lifetime. Giving a further check on the lifetime extraction
- Feed down
 - 0%
 - I 3% (worst case)

Full List of Systematics

Test	+Δ(τ) <i>p</i> s	-Δ(τ) ps
Central Value		
Phase Space	0.0104	0.0104
s=1.2	0.0060	0.0060
Single Gaussian Prompt	0.0069	0.0069
J/ψ SB +1σ	0.0096	
J/ψ SB -1σ		0.0114
J/ψ MC +1σ	0.0036	
J/ψ MC -1σ		0.0042
B ⁺ Lifetime +1σ	0.0002	
B ⁺ Lifetime -1σ		0.0002
B ⁺ Lifetime Float	0.0067	0.0067
B+ Mass Distribution	0.0040	0.0040
J/ψ MC Mass Distribution	0.0197	0.0197
Prompt Mass +1σ	0.0050	
Prompt Mass -1σ		0.0048
Remove Weighting	0.0086	0.0086
Alignment	0.0059	0.0059
Β _c p _T 2*μ	0.0219	
B _c p _T μ/2		0.0025
J/ψ SB Left Mass	0.0131	
J/ψ SB Right Mass		0.0144
0% Feed Down		0.0032
13% Feed Down	0.0037	
TOTAL	0.0392	0.0338

B_c Lifetime Conclusions

- Using I.3 fb⁻¹ of data, a measurement on the B_c lifetime has been made in the semileptonic channel : $B_c \rightarrow J/\psi + \mu + X$
- An unbinned likelihood simultaneous fit to the J/ ψ + μ invariant mass and lifetime distributions giving 856 ± 85 signal events and a lifetime of :

$$\tau(B_c) = 0.444_{-0.036}^{+0.039}(stat)_{-0.034}^{+0.039}(sys) \ ps$$

- World's most precise measurement
- Consistent with previous measurements and theoretical predictions

QCD Sum Rules : 0.48 +/- 0.05 ps