Study of ISR Production of the DD System at BABAR

Silvano Tosi

Università & INFN Genova, on behalf of the BABAR Collaboration

QWG Workshop, DESY, 19 October 2007

Summary

- Motivation
- Reconstruction
- Cross section measurements
- Interpretation of the results
- Conclusions

arXiv:0710.1371 [hep-ex], submitted to Phys. Rev. D rapid communications *Results are preliminary*

Motivation

- Several new states with *cc* content recently discovered
 - Many have masses well above open charm threshold
- Ordinary charmonium states at these masses are expected to mostly decay to $D^{(*)}\overline{D^{(*)}}$.
- ISR production of DD states allows to study J^{PC}=1⁻⁻⁻ states above threshold
 - Both $D^0 \overline{D^0}$ and $D^+ D^-$ considered.
 - Previous results on a smaller dataset, 289/fb (hep-ex/0607083).
 - Update to 384/fb

 γ_{ISR} detection not requested: reconstructed as missing particle

Reconstruction (I)

- 7 combinations of *D* decay modes considered:
 - $D^0 \rightarrow K^- \pi^+, \ K^- \pi^+ \pi^0, \ K^- \pi^+ \pi^-$

Silvano Tosi

Reconstruction (II)

- $|M^2_{rec}| < 1 \text{ GeV}^2/c^4$
- $m(D\overline{D}) < 6 \text{ GeV/c}^2$ to suppress $e^+e^- \rightarrow D\overline{D}^{(*)}$ events

Background Studies

- 9-tile method shows little background in the signal region.
- Possible background from charmonium decays to $D\overline{D}^*$ with undetected γ or π^0 .
 - Very little D^* signal observed in $\Delta m(D^0\gamma)$ and $\Delta m(D^0\pi^0)$ in missing mass signal region.
 - Sideband of missing mass shows prominent D^{*0} component.
- Non ISR events.
 - Sideband of missing mass shows no evidence of any $D\overline{D}$ structure.

DD Mass Spectrum

- Total $\overline{D^0}D^0$ and D^+D^- mass spectrum.
- Prominent ψ (3770) peak
- Indication of \u03c8(4415) and \u03c8(4040)
- No sign of \u03c6(4160) and Y(4260)
- A structure at ~ 3.9 GeV/c^2

Coupled-Channel Effects

- The structure at 3.9 GeV is not necessarily associated to a new state.
- The coupled-channel model (*Phys. Rev.* **D21**, 203, 1980) predicts an enhancement in this region.

Cross Section Measurement (I)

 DD ISR events simulated with m(DD) at various values; a m(DD)-dependent efficiency is determined for every mode.

 $\varepsilon_i^B(m_{DD}^{-}) = \varepsilon_i(m_{DD}^{-}) \times \mathcal{B}_i$

$$\varepsilon^{B}(m_{D\overline{D}}) = \frac{\Sigma^{7}_{i=1} N_{i}(m_{D\overline{D}}^{-})}{\Sigma^{7}_{i=1} N_{i}(m_{D\overline{D}}) / \varepsilon^{B}_{i}(m_{D\overline{D}})}$$

• Differential luminosity⁽¹⁾ :

 $\frac{dL}{dm_{D\bar{D}}} = L \frac{2m_{D\bar{D}}}{s} \frac{\alpha}{\pi x} (\ln(s/m_e^2) - 1)(2 - 2x + x^2) \qquad (x = 1 - m_{D\bar{D}}^2 / s)$

• $D\overline{D}$ cross section: $\sigma_{e^+e^- \rightarrow D\overline{D}} (m_{D\overline{D}}) = \frac{dN / dm_{D\overline{D}}}{\varepsilon^B(m_{DD}) dL / dm_{DD}}$

⁽¹⁾ M. Benayoun et al. Mod. Phys. Lett. A 14, 2605 (1999)

Cross Section Measurement (II)

Silvano Tosi

Integrating the $\psi(3770)$ region:

 $\mathcal{B}(\psi(3770) \rightarrow D^0 D^0)$ $= 1.78 \pm 0.33 \pm 0.24$ $\mathcal{B}(\psi(3770) \rightarrow D^+D^-)$

 $PDG06: 1.28 \pm 0.14$

- Systematic errors \bullet
 - PID efficiencies, background estimate, imperfect simulation of extra π^0 ;
 - an overall common scale.

Fit to DD Mass Spectrum (I)

- UML fit to the sum of all modes.
- $\psi(4415), \psi(4160) \text{ and } \psi(4040)$ parameters fixed to BES results.
- Parameters of ψ (3770) and 3.9-GeV structure (a Gaussian) are left free.
- Data are better described including ٠ interference between the ψ s and non-resonant DD background.

$$f \left| \underbrace{O}_{i\phi_{1}} + c_{1} \underbrace{W}_{i\phi_{1}} + c_{2} \underbrace{O}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \right|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{2}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + (1 - f \underbrace{B}_{i\phi_{n}} + \dots + c_{n} W_{n} e^{i\phi_{n}} \Big|^{2} + \dots + c_{n} W_{$$

P, B: a threshold function. Also considered a linear function for P.

WS

f = 0.829 ± 0.015

non DD background

Fit to DD Mass Spectrum (II)

- A second fit is performed weighting each event with $1/\epsilon^{B}_{i}$.
- This fit yields:

$$\begin{split} \mathsf{m}(\psi(3770)) &= (3778.8 \pm 1.9 \pm 0.9) \ \mathsf{MeV/c^2} \quad \mathcal{PDG06:} \ (3772.4 \pm 1.1) \ \mathcal{MeV/c^2} \\ \Gamma(\psi(3770)) &= (23.5 \pm 3.7 \pm 0.9) \ \mathsf{MeV} \\ \mathsf{m}(G(3900)) &= (3943 \pm 17 \pm 12) \ \mathsf{MeV/c^2} \\ \sigma(G(3900)) &= (52 \pm 8 \pm 7) \ \mathsf{MeV/c^2} \end{split}$$

- No Y(4260) (nor higher-mass Y states) is found:
 - $N(Y(4260)) = 0.2 \pm 6.1 \pm 2.8;$
 - using BABAR measurement of $\mathcal{B}(Y(4260) \rightarrow J/\psi \pi^+\pi^-)$ (1)

$$\frac{\mathcal{B}(Y(4260) \to D\bar{D})}{\mathcal{B}(Y(4260) \to J/\psi \,\pi^{+}\pi^{-})} < 1.0, \quad 90\% \text{ C.L.}$$

⁽¹⁾ Phys. Rev. Lett. 95, 142001 (2005)

• $D\overline{D}$ -pair production in ISR is an interesting tool to study vector states with $c\overline{c}$ content.

• Spectrum dominated by $J^{PC}=1-\psi$ resonances.

• In addition, the presence of a broad structrure near 3.9 GeV/c² is required.

– possibly not a new ψ state (coupled-channel effect ?).

• No evidence for Y(4260) (nor other Y states)

- different behavior wrt ordinary charmonium states.

• Paper submitted to Phys. Rev. D RC

Back-up Slides

The **BABAR** Detector

QWG 2007

Reconstruction

• 7 combinations of *D* decay modes considered

Channel	First D decay mode	Second D decay mode	$\epsilon_i^{\mathcal{B}}(m_{D\overline{D}}) \ (\times 10^{-3}$)
1. $D^0\overline{D}^0$	$D^0 \to K^- \pi^+$	$\overline{D}{}^{\scriptscriptstyle 0} \to K^+ \pi^-$	0.14	_
2. $D^0\overline{D}^0$	$D^0 \to K^- \pi^+$	$\overline{D}^{0} \rightarrow K^{+} \pi^{-} \pi^{0}$	0.42	ε^{B}_{i} : efficiency \times branching fraction
3. $D^0\overline{D}^0$	$D^0 \to K^- \pi^+$	$\overline{D}{}^0 \to K^+ \pi^- \pi^+ \pi^-$	0.18	
4. $D^0\overline{D}^0$	$D^0 \to K^- \pi^+ \pi^0$	$\overline{D}^{0} \rightarrow K^{+}\pi^{-}\pi^{+}\pi^{-}$	0.26	
5. D^+D^-	$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^- \to K^+ \pi^- \pi^-$	0.37	
6. D^+D^-	$D^+ \rightarrow K^- \pi^+ \pi^+$	$D^- \rightarrow K^+ K^- \pi^-$	0.081	
7. D^+D^-	$D^+ \to K^- \pi^+ \pi^+$	$D^- ightarrow K^0_S \pi^-$	0.042	

- Tracks forming *D* candidates constrained to common vertex (χ^2 vertex prob>0.1%).
- Photon energy for $\pi^0 > 30$ MeV.
- *DD* pairs constrained to common vertex and requested to originate from interaction region.
- One extra π^0 candidate only allowed in the event (zero for channel 4); no extra well measured tracks.
- L = 384/fb.

Fit to DD Mass Spectrum

- Systematics include uncertainties from
 - masses and widths of the ψ s;
 - signal fraction;
 - meson radius in the Breit-Wigner;
 - different parameterization of background;
 - *D* masses and overall *DD* mass scale;
 - $\varepsilon^{B}(m\overline{D}D).$