Quark Masses and α_s from the total hadronic cross section in

e^+e^- annihilation

Matthias Steinhauser

TTP, University of Karlsruhe

in collaboration with Hans Kühn, Christian Sturm, Thomas Teubner

Outline

1. Introduction

α_s
 m_b

Introduction

- Quark masses
 - \blacksquare B decays: $\Gamma \sim m_b^5 \dots$
 - Spectroscopy
 - Higgs decay \Rightarrow ILC $\Gamma(H \to b\bar{b}) = \frac{G_F M_H}{4\sqrt{2}\pi} m_b^2 (1 + \mathcal{O}(\alpha_s) + ...)$
 - Yukawa unification

Introduction

Introduction

- Quark masses
 - \blacksquare B decays: $\Gamma \sim m_b^5 \dots$
 - Spectroscopy
 - Higgs decay \Rightarrow ILC $\Gamma(H \to b\bar{b}) = \frac{G_F M_H}{4\sqrt{2}\pi} m_b^2 (1 + \mathcal{O}(\alpha_s) + ...)$
 - Yukawa unification
- Strong coupling α_s and quark masses
 - Fundamental parameters of QCD/SM

Quark mass definitions

$$\mathcal{L}_{\text{QCD}} = -\frac{1}{4}G_{\mu\nu}^2 + \sum_{q} \bar{\psi}_q \left(\not\!\!\!D - \not\!\!\!m_q \right) \psi_q$$

- pole mass
- $ightarrow \overline{\mathrm{MS}}$ mass
- kinetic mass
- IS mass
- PS mass
- S RS mass
- ...

[Bigi, Shifman, Uraltsev, Vainshtein'97]

[Hoang,Smith,Stelzer,Willenbrock'99]

[Beneke'98]

[Pineda'01]

Light quark masses, top quark mass

PDG:

$$\begin{array}{rcl} m_u &=& 1.5 \dots 3.0 \ {\rm MeV} \\ m_d &=& 3 \dots 7 \ {\rm MeV} \\ \\ \overline{m} = \frac{m_u + m_d}{2} &=& 2.5 \dots 5.5 \ {\rm MeV} \\ \\ m_s &=& 95 \pm 25 \ {\rm MeV} \end{array} \qquad \hbox{[Chetyrkin et al., Jamin et al., Lattice, ...]}$$

Iess accurately known than heavy quark masses

$$m_t = 170.9 \pm 1.8 \text{ GeV}$$
 [CDF,D0]

Charm/Bottom

Charm/Bottom

R measurement

basic idea: $R^{\exp} = R^{\operatorname{th}}(\alpha_s, m_q) \Leftrightarrow \alpha_s$

(weak dependence on variation of m_q)

 $R^{\text{th}}(s)$:

rhad: [Harlander,MS'02]

- full quark mass dependence up to $\mathcal{O}(\alpha_s^2)$
- $\checkmark \ \mathcal{O}(\alpha_s^3)$: $(m_q^2/s)^0$, $(m_q^2/s)^1$, $(m_q^2/s)^2$
- **_** . . .
- source consistent running and decoupling of α_s

[v. Ritbergen, Larin, Vermaseren'97, Czakon'05]

[Chetyrkin,Kniehl,MS'97]

basic idea: $R^{\exp} = R^{\operatorname{th}}(\alpha_s, m_q) \Leftrightarrow \alpha_s$ (weak dependence on variation of m_q) $R^{\exp}(s) \Rightarrow \alpha_s^{(4)}(s)$ $(n_f = 4)$ $\delta \alpha_s^{\rm sys, uncor}$ $\delta \alpha_s^{\rm sys, cor}$ $\alpha_s^{(4)}(s)$ $\alpha_s^{(4)}$ \sqrt{s} (GeV) $\delta \alpha_s^{\rm stat}$ 0.2113 0.0026 10.5380.0618 0.0444 0.232 10.330 0.12800.0048 0.0469 0.0445 0.1429.996 0.1321 0.0032 0.0516 0.0344 0.1479.432 0.1408 0.0039 0.0526 0.0291 0.1590.1868 0.0187 8.380 0.0195 0.218 0.04617.380 0.1604 0.0131 0.0138 0.0404 0.1956.964 0.1881 0.02210.0386 0.0134 0.237

↑ massless approx.!!!

basic idea: $R^{\exp} = R^{\operatorname{th}}(\alpha_s, m_q) \Leftrightarrow \alpha_s$

(weak dependence on variation of m_q)

•
$$R^{\exp}(s) \Rightarrow \alpha_s^{(4)}(s)$$
 $(n_f = 4)$

• Evolve to common scale and combine $\Rightarrow \alpha_s^{(4)}(9 \text{ GeV}) = 0.160 \pm 0.024 \pm 0.024$

basic idea: $R^{\exp} = R^{\operatorname{th}}(\alpha_s, m_q) \Leftrightarrow \alpha_s$

(weak dependence on variation of m_q)

•
$$R^{\exp}(s) \Rightarrow \alpha_s^{(4)}(s)$$
 $(n_f = 4)$

- Evolve to common scale and combine $\Rightarrow \alpha_s^{(4)}(9 \text{ GeV}) = 0.160 \pm 0.024 \pm 0.024$
- $\alpha_s^{(4)}(9 \text{ GeV}) \rightarrow \alpha_s^{(4)}(\mu_b^{\text{dec}}) \rightarrow \alpha_s^{(5)}(\mu_b^{\text{dec}}) \rightarrow \alpha_s^{(5)}(M_Z)$ (practically) independent from μ_b^{dec} (4-loop running and 3-loop decoupling) $\approx \alpha_s^{(5)}(M_Z) = 0.110^{+0.010+0.010}_{-0.012-0.011} = 0.110^{+0.014}_{-0.017}$

[Kühn, MS, Teubner'07]

basic idea: $R^{\exp} = R^{\operatorname{th}}(\alpha_s, m_q) \Leftrightarrow \alpha_s$

(weak dependence on variation of m_q)

•
$$R^{\exp}(s) \Rightarrow \alpha_s^{(4)}(s)$$
 $(n_f = 4)$

- Evolve to common scale and combine $\Rightarrow \alpha_s^{(4)}(9 \text{ GeV}) = 0.160 \pm 0.024 \pm 0.024$
- $\alpha_s^{(4)}(9 \text{ GeV}) \rightarrow \alpha_s^{(4)}(\mu_b^{\text{dec}}) \rightarrow \alpha_s^{(5)}(\mu_b^{\text{dec}}) \rightarrow \alpha_s^{(5)}(M_Z)$ (practically) independent from μ_b^{dec} (4-loop running and 3-loop decoupling) $\Rightarrow \alpha_s^{(5)}(M_Z) = 0.110^{+0.010+0.010}_{-0.012-0.011} = 0.110^{+0.014}_{-0.017}$

[Kühn, MS, Teubner'07]

- CLEO analysis: $\alpha_s^{(5)}(M_Z^2)|_{\text{CLEO}} = 0.126 \pm 0.005^{+0.015}_{-0.011}$
 - massless approximation for R(s)

R: experiment + theory

R: experiment + theory

α_s from R

- $a_s^{(5)}(M_Z) = 0.110^{+0.010+0.010}_{-0.012-0.011} = 0.110^{+0.014}_{-0.017}$
- Combine with $\alpha_s^{(5)}(M_Z) = 0.124^{+0.011}_{-0.014}$

[Kühn, MS, Teubner'07]

[Kühn,MS'01]

R measurements between 2 and 10.5 GeV from BES'01, MD-1'96, CLEO'97

$$\Rightarrow \alpha_s^{(5)}(M_Z) = 0.119^{+0.009}_{-0.011}$$

• Compare:
$$\alpha_s^{(5)}(M_Z) = 0.1189 \pm 0.0010$$

[Bethke'06]

Sum rules

$$R_{Q} = \frac{\sigma(e^{+}e^{-} \rightarrow Q\bar{Q} + ...)}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}$$

$$\mathcal{M}_{n} \equiv \int \frac{\mathrm{d}s}{s^{n+1}} R_{Q}(s) \qquad \text{(moments)}$$

$$R_{Q} = 12\pi \mathrm{Im} \left[\Pi_{Q}(q^{2} = s + i\varepsilon) \right]$$

$$\mathcal{M}_{n} = \left. \frac{12\pi^{2}}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^{2}} \right)^{n} \Pi_{Q}(q^{2}) \right|_{q^{2}=0}$$

$$(\text{dispersion relation})$$

$$\mathcal{M}_n = \left. \frac{12\pi^2}{n!} \left(\frac{\mathrm{d}}{\mathrm{d}q^2} \right)^n \Pi_Q(q^2) \right|_{q^2 = 0}$$

compute Taylor expansion

C_n to 4 loops

- 1, 2 and 3 loops: MATAD
- 4 loops:
 - method: 1. reduce to master integrals

[Laporta,Remiddi'96; Laporta'01]

2. compute masters

- several Million equations; several GB tables
- all steps cross-checked

1. [Chetyrkin,Kühn,Sturm'06; Boughezal,Czakon,Schutzmeier'06]

2. [Schröder, Vuorinen'05; Chetyrkin, Faisst, Sturm, Tentyukov'06],...

[MS'96-'00]

C_n to 4 loops

$$\begin{split} \bar{C}_n &= \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \left(\bar{C}_n^{(10)} + \bar{C}_n^{(11)} l_{m_b} \right) \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left(\bar{C}_n^{(20)} + \bar{C}_n^{(21)} l_{m_b} + \bar{C}_n^{(22)} l_{m_b}^2 \right) \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^3 \left(\bar{C}_n^{(30)} + \bar{C}_n^{(31)} l_{m_b} + \bar{C}_n^{(32)} l_{m_b}^2 + \bar{C}_n^{(33)} l_{m_b}^3 \right) \\ &l_{m_b} = \ln(m_b^2/\mu^2) \end{split}$$

n	$ar{C}_n^{(0)}$	$ar{C}_n^{(10)}$	$\bar{C}_n^{(11)}$	$ar{C}_n^{(20)}$	$\bar{C}_n^{(21)}$	$\bar{C}_n^{(22)}$	${ar C}_n^{(30)}$	$ar{C}_n^{(31)}$	$ar{C}_n^{(32)}$	$ar{C}_n^{(33)}$
1	1.0667	2.5547	2.1333	3.1590	3.4425	0.0889	-7.7624	-0.0599	1.5851	-0.0543
2	0.4571	1.1096	1.8286	3.2319	5.0798	1.9048	—	4.0100	7.2551	0.1058
3	0.2709	0.5194	1.6254	2.0677	4.5815	3.3185	—	5.6496	13.4967	2.3967
4	0.1847	0.2031	1.4776	1.2204	3.4726	4.4945		3.9381	17.2292	6.2423

C_n to 4 loops

$$\begin{split} \bar{C}_n &= \bar{C}_n^{(0)} + \frac{\alpha_s(\mu)}{\pi} \left(\bar{C}_n^{(10)} + \bar{C}_n^{(11)} l_{m_b} \right) \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^2 \left(\bar{C}_n^{(20)} + \bar{C}_n^{(21)} l_{m_b} + \bar{C}_n^{(22)} l_{m_b}^2 \right) \\ &+ \left(\frac{\alpha_s(\mu)}{\pi} \right)^3 \left(\bar{C}_n^{(30)} + \bar{C}_n^{(31)} l_{m_b} + \bar{C}_n^{(32)} l_{m_b}^2 + \bar{C}_n^{(33)} l_{m_b}^3 \right) \\ &l_{m_b} = \ln(m_b^2/\mu^2) \end{split}$$

n	$ar{C}_n^{(0)}$	$ar{C}_n^{(10)}$	$\bar{C}_n^{(11)}$	$ar{C}_n^{(20)}$	$\bar{C}_n^{(21)}$	$\bar{C}_n^{(22)}$	$ar{C}_n^{(30)}$	$\bar{C}_n^{(31)}$	$ar{C}_n^{(32)}$	${ar C}_n^{(33)}$
1	1.0667	2.5547	2.1333	3.1590	3.4425	0.0889	-7.7624	-0.0599	1.5851	-0.0543
2	0.4571	1.1096	1.8286	3.2319	5.0798	1.9048	—	4.0100	7.2551	0.1058
3	0.2709	0.5194	1.6254	2.0677	4.5815	3.3185	—	5.6496	13.4967	2.3967
4	0.1847	0.2031	1.4776	1.2204	3.4726	4.4945	—	3.9381	17.2292	6.2423

 $-8.0 \le \bar{C}_2^{(30)} \le 9.5, -8.0 \le \bar{C}_3^{(30)} \le 8.3, -8.0 \le \bar{C}_4^{(30)} \le 7.4$

$$\mathcal{M}^{\exp} = \mathcal{M}^{\operatorname{res}} + \mathcal{M}^{\operatorname{thresh}} + \mathcal{M}^{\operatorname{cont}}$$

$\checkmark \mathcal{M}^{\mathrm{res}}$:	$R^{\rm res}(s) = \frac{g}{2}$	$\frac{\partial \pi M_R \Gamma_{ee}}{\alpha^2} \left(\frac{\alpha}{\alpha(s)}\right)$	$\delta(s - M_R^2)$		
	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\Upsilon(4S)$	
$M_{\Upsilon}(GeV)$	9.46030(26)	10.02326(31)	10.3552(5)	10.5794(12)	
Γ_{ee} (keV)	1.340(18)	0.612(11)	0.443(8)	0.272(29)	
$(lpha/lpha(M_\Upsilon))^2$	0.932069	0.93099	0.930811	0.930093	

$$\mathcal{M}^{\exp} = \mathcal{M}^{\operatorname{res}} + \mathcal{M}^{\operatorname{thresh}} + \mathcal{M}^{\operatorname{cont}}$$

•
$$\mathcal{M}^{\text{res}}$$
: $R^{\text{res}}(s) = \frac{9\pi M_R \Gamma_{ee}}{\alpha^2} \left(\frac{\alpha}{\alpha(s)}\right)^2 \delta(s - M_R^2)$

 \checkmark $\mathcal{M}^{\mathrm{thresh}}$: CLEO data up to 11.24 GeV

$$\mathcal{M}^{\exp} = \mathcal{M}^{\operatorname{res}} + \mathcal{M}^{\operatorname{thresh}} + \mathcal{M}^{\operatorname{cont}}$$

•
$$\mathcal{M}^{\text{res}}$$
: $R^{\text{res}}(s) = \frac{9\pi M_R \Gamma_{ee}}{\alpha^2} \left(\frac{\alpha}{\alpha(s)}\right)^2 \delta(s - M_R^2)$

- $\mathcal{M}^{\mathrm{thresh}}$: CLEO data up to 11.24 GeV
- $\mathcal{M}^{\text{cont}}$: $\sqrt{s} \ge 11.24 \text{ GeV}$

no data $R^{\text{theory}} \Rightarrow \text{full mass dependence up to } \mathcal{O}(\alpha_s^2)$ rhad: [Harlander,MS'02]

R(s)

R(s)

R(s)

 \mathcal{M}^{\exp}

\overline{n}	$\mathcal{M}_n^{\mathrm{res},(\mathrm{1S-4S})}$	$\mathcal{M}_n^{\mathrm{thresh}}$	$\mathcal{M}_n^{ ext{cont}}$	$\mathcal{M}_n^{ ext{exp}}$
	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$	$\times 10^{(2n+1)}$
1	1.394(23)	0.296(32)	2.911(18)	4.601(43)
2	1.459(23)	0.249(27)	1.173(11)	2.881(37)
3	1.538(24)	0.209(22)	0.624(7)	2.370(34)
4	1.630(25)	0.175(19)	0.372(5)	2.178(32)

 $\sqrt{s} \ge 4.8 \text{ GeV pQCD}$

 \checkmark $\mathcal{M}^{\mathrm{cont}}$

 m_b

$$\mathcal{M}_n^{\text{th}} \stackrel{!}{=} \mathcal{M}_n^{\text{exp}}$$
$$m_b(\mu) = \frac{1}{2} \left(\frac{\bar{C}_n}{\mathcal{M}_n^{\text{exp}}}\right)^{1/(2n)}$$

- **1.** set $\mu = 10$ GeV ⇒ $m_b(10$ GeV) **2.** RGE ⇒ $m_b(m_b)$
- Uncertainties
 - $\delta \mathcal{M}_n^{\exp}$
 - $\alpha_s(M_Z) = 0.1189 \pm 0.0020$
 - $\mu = (10 \pm 5) \text{ GeV}$
 - $\delta \mathcal{M}_n^{np}$ (only charm)

[Bethke'06]; $\delta \alpha_s \times 2$

 m_b

$$\mathcal{M}_n^{\text{th}} \stackrel{!}{=} \mathcal{M}_n^{\text{exp}}$$
$$m_b(\mu) = \frac{1}{2} \left(\frac{\bar{C}_n}{\mathcal{M}_n^{\text{exp}}}\right)^{1/(2n)}$$

n	$m_b(10 \text{ GeV})$	exp	$lpha_{s}$	μ	total	$\delta \bar{C}_n^{(30)}$	$m_b(m_b)$
1	3.593	0.020	0.007	0.002	0.021	_	4.149
2	3.609	0.014	0.012	0.003	0.019	0.006	4.164
3	3.618	0.010	0.014	0.006	0.019	0.008	4.173
4	3.631	800.0	0.015	0.021	0.027	0.012	4.185

$$m_b(10 \text{ GeV}) = 3.609(25) \text{ GeV}$$

[Kühn,MS,Sturm'07]

$m_b(10 \text{ GeV})$

Forschungsuniversität · gegründet 1825

Matthias Steinhauser, Quark masses and $lpha_{S}$, QWG07, 17-20 Oct., Hamburg – p.20

$m_b(10 \text{ GeV})$

Forschungsuniversität · gegründet 1825

Matthias Steinhauser, Quark masses and $lpha_{S}$, QWG07, 17-20 Oct., Hamburg – p.20

Bottom — comparison

Conclusions

- Most precise values for m_c and m_b $m_c(m_c) = 1.286(13) \text{ GeV} \qquad m_b(m_b) = 4.164(25) \text{ GeV}$
- NNNLO analysis
- $ightarrow \overline{\mathrm{MS}}$ mass
- Possible improvements: experimental measurements: $R(s), \Gamma_{ee}$

$$\begin{array}{l} \bullet \frac{\delta m_s}{m_s} \approx 10\% \\ \frac{\delta m_c}{m_c} \approx 1\% \\ \frac{\delta m_b}{m_b} \approx 0.6\% \\ \frac{\delta m_t}{m_t} \approx 1\% \end{array}$$

$$R^{\exp} \Leftrightarrow \alpha_s^{(5)}(M_Z) = 0.119^{+0.009}_{-0.011}$$

