

Introduction

• The spin-independent potential for $q\bar{q}$ onia is well-represented as

$$V(r) = \frac{4}{3}\alpha_S \frac{1}{r} + kr$$

The Coulombic, 1/r, part is of course a Lorentz vector. The confinement, kr, part is generally **assumed** to be Lorentz scalar.

- The spin-dependent potential is not so well modeled. A Breit-Fermi reduction of the Coulombic part leads to a spin-orbit *L* · *S*, a tensor, *T*₁₂, and a spin-spin *s*₁ · *s*₂ part, which is in the lowest order a contact or a delta function interaction, finite for *L* = 0, and zero for *L* ≠ 0. No long-range spin-dependent part arises from the scalar confinement potential.
- As we know from textbooks, in the quark model, the ground state masses of hadrons depend only on quark masses and the hyperfine $\vec{s_1} \cdot \vec{s_2}$ interaction. The hyperfine interaction is all-important. It gives rise to the splitting of spin-singlet and spin-triplet, or

$$\Delta M_{hf}(nL) \equiv M(n^3L - n^1L)$$

Introduction, cont'd

• According to the potential model described above

```
\Delta M_{hf}(1S,2S,...) = 	ext{finite}, \quad \Delta M_{hf}(1P,2P,...) = 0
```

Of course, we do not know how the hyperfine interaction, and the consequent ΔM_{hf} changes with quark mass, or for radial excitations (different n), or the radius of the meson, as the potential changes from being dominated by the Coulombic or confinement parts.

- We also do not know if the simple prediction $\Delta M_{hf}(L \neq 0) = 0$, based on the rather adhoc assumptions, is true.
- To answer these questions, we need to measure as many different ΔM_{hf} , singlet-triplet splittings, as possible. Since the triplet quarkonium states are generally well-studied, the job amounts to identifying the spin-singlet states.

Spin Singlets—What is Known

The bound charmonium singlets are $\eta_c(1^1S_0)$, $\eta'_c(2^1S_0)$, and $h_c(1^1P_1)$.

• $\eta_c(1^1S_0)$ was firmly identified at SLAC about 30 years ago, and we know that

 $\Delta M_{hf}(1S) \equiv M(J/\psi) - M(\eta_c) = 117.1 \pm 1.2 \; {
m MeV}$

• In 2004, after many false starts $\eta_c'(2^1S_0)$ was identified by Belle, CLEO, and BaBar, and PDG07 lists its average mass as 3637 ± 4 MeV, so that

 $\Delta M_{hf}(2S) \equiv M(\psi') - M(\eta'_c) = 49 \pm 4 \; {
m MeV}$

Some claims to the contrary, the factor 2.4 smaller 2S hyperfine splitting came as a surprise. Of course, **post** dictions abound.

The unavoidable lesson is that hyperfine splittings can present surprises.

• This makes it imperative to find $h_c({}^1P_1)$ and measure its mass with precision. This has now been done.

The Search for $h_c(1^1P_1)$

• The $p\bar{p}$ measurements by the Fermilab experiments E760/E835 have determined the masses of the triplet P states χ_{cJ} with great precision, so that their centroid is

 $\langle M(\chi_{cJ}) \rangle = (5M(\chi_{c2}) + 3M(\chi_{c1}) + M(\chi_{c0}))/9 = 3525.4 \pm 0.1 \text{ MeV}$

• If we assume that

 $M({}^{3}P) = \langle M(\chi_{cJ}) \rangle$, as determined above,

the prediction that $\Delta M_{hf}(1P) = 0$ would imply $M(h_c) = 3525.4$ MeV.

- Let us go and find it.
- In 1982 Crystal Ball failed in the search for h_c in the reaction

$$\psi(2S) \to \pi^0 h_c, \ h_c \to \gamma \eta_c.$$

• In 1992 Fermilab E760 studied the reaction $p\bar{p} \rightarrow h_c \rightarrow \pi^0 J/\psi$ and claimed the observation of a signal for h_c . However, higher luminosity runs in 1996 and 2000 failed to confirm this observation.

The Search for $h_c(1^1P_1)$, cont'd

• In 2005, Fermilab E835 searched for h_c in their 1996/2000 data in the reaction $p\bar{p} \rightarrow h_c \rightarrow \gamma \eta_c$, and reported

 $\Delta M_{hf}(1P) = -0.4 \pm 0.2 \pm 0.2 \text{ MeV}$

with 13 counts, and a significance of the h_c signal at $\sim 3\sigma$ level.

• In 2005, CLEO reported a 6σ identification of h_c with 3.08 million $\psi(2S)$ in the reaction

 $\psi(2S) \to \pi^0 h_c, \ h_c \to \gamma_3 \eta_c, \ \pi^0 \to \gamma_1 \gamma_2$

Inclusive analyses were made by loosely constraining either $E(\gamma_3)$ or $M(\eta_c)$. Exclusive analysis was made with no constraints on $E(\gamma_3)$ or $M(\eta_c)$, but by reconstructed η_c in several hadronic decays. Consistent results were obtained.

• The present report is the result of a similar analysis of CLEO-c data with **24.5 million** $\psi(2S)$.

DESY

Inclusive Analysis

To analyze the inclusive spectrum of π^0 recoils in the $\psi(2S) \to \pi^0 h_c$, $h_c \to \gamma \eta_c$ it is required to model the background and the signal peak.

- Background Shape: To determine the background shape, we use the π^0 recoil spectrum from the data itself, when the requirement $E_{\gamma} = 503 \pm 35$ MeV for the E1 photon is not applied. This recoil spectrum is essentially all background because the product branching fraction for the h_c production and decay is $\sim 10^{-4}$.
- Peak Shape: The experimental resolution function was determined by Monte Carlo simulation of the reaction. Its shape was fitted with a double Gaussian and convoluted with an **assumed** Breit-Wigner width of $\Gamma(h_c) = 0.9$ MeV to fit the observed signal in the data.

Inclusive Analysis, Summary of Systematic Errors

Systematics in	$M(h_c) - MeV$	$B_1 \times B_2 \times 10^4$
Background shape	0.10	0.26
π^0 energy scale	0.08	—
Event selection	0.14	0.31
Monte Carlo Input/Output	0.06	_
Signal shape	0.03	0.14
h_c width	0.03	0.27
Binning, fitting range	0.03	0.08
Efficiency	—	0.20
Sum in quadrature	0.21	0.55

Inclusive Analysis Results CLEO Preliminary		
$N(h_c)$	1075 ± 111	
Significance	10σ	
$M(h_c)$, MeV	$3525.35 \pm 0.24 \pm 0.21$	
$B_1 \times B_2$	$(3.95\pm0.41\pm0.55) imes10^{-4}$	

Exclusive Analysis

In the exclusive analysis, instead of constraining E_{γ} of the photon candidate from the decay $h_c \rightarrow \gamma \eta_c$, 18 η_c hadronic decay channels were reconstructed.

 $\psi' \to \pi^0 h_c, h_c \to \gamma \eta_c, \eta_c \to \text{hadrons}$

2 body: one channel, pp̄
3 body: 9 channels, ηπ⁺π⁻ (η → γγ), ηπ⁺π⁻ (η → π⁺π⁻π⁰), K_SK⁺π⁻,K⁺K⁻π⁰, K_SK_Sπ⁰, ηK⁺K⁻ (η → γγ), ηK⁺K⁻ (η → π⁺π⁻π⁰), pp̄π⁰, pp̄η
4 body: 5 channels, π⁺π⁻π⁺π⁻, π⁺π⁻π⁰π⁰, K⁺K⁻π⁺π⁻, K⁺K⁻K⁺K⁻, pp̄π⁺π⁻
6 body: 3 channels, π⁺π⁻π⁺π⁻π⁺π⁻, π⁺π⁻π⁺π⁻π⁰π⁰, K⁺K⁻π⁺π⁻π⁺π⁻

Recoiling Mass Against π^0 for sum of all η_c decay channels

Fit to the data was done using a Breit-Wigner with Γ =0.9 MeV convoluted with the experimental resolution function for signal plus a linear background.

 $N(h_c) = 149 \pm 15$, significance = 13σ $M(h_c) = 3525.35 \pm 0.27$ MeV

Exclusive Analysis, Systematic Errors

Systematic errors in exclusive analysis have been obtained using the same procedures which we use in inclusive analysis.

Systematics in	$M(h_c) - MeV$
π^0 energy scale	0.08
Event Selection	0.13
Monte Carlo Input/Output	0.11
Background shape	0.01
Signal shape	0.01
h_c width	0.01
Binning, fitting range	0.08
Sum in quadrature	0.20

Northwestern University

Angular Distributions from Inclusive and Exclusive Analyses

The angular distributions of the E1 photon in both inclusive and exclusive analysis were obtained by fitting separately the h_c peak in the different angular ranges. The exclusive events were removed from the inclusive sample to enable averaging the two results.

Fit to $N(1 + \alpha \cos^2 \theta)$ gave: $\alpha_{incl} = 0.87 \pm 0.65$ $\alpha_{excl} = 1.89 \pm 0.94$ $\alpha_{average} = 1.34 \pm 0.53$ which are consistent with $\alpha = 1$ expected for an E1 transition from $h_c(J^{PC} = 1^{+-})$ to $\eta_c(J^{PC} = 0^{--})$.

SUMMARY

We have analyzed the new ψ' data with estimated $\sim 24.5\times 10^6~\psi'$ events, for $\psi'\to\pi^0 h_c\to (\gamma\gamma)(\gamma\eta_c)~.$

CLEO Preliminary, 24.5 $ imes$ 10 $^6~\psi^\prime$		Published, 3 $ imes$ 10 6 ψ^{\prime}
Inclusive , $N(h_c)$	1075 ± 111	140 ± 40
Significance	10.0σ	3.8σ
$M(h_c)$, MeV	$3525.35 \pm 0.24 \pm 0.21$	$3524.9 \pm 0.7 \pm 0.4$
$B_1 imes B_2 imes 10^4$	$3.96{\pm}0.41{\pm}0.55$	$3.5{\pm}1.0{\pm}0.7$
Exclusive , $N(h_c)$	149 ± 15	17.5 ± 4.5
Significance	13.1σ	5.2σ
$M(h_c)$, MeV	$3525.35 \pm 0.27 \pm 0.20$	$3523.6 \pm 0.9 \pm 0.5$

Average for 24.5×10⁶ ψ' : $M(h_c)(Incl+Excl)=3525.35\pm0.19\pm0.15$ MeV.

The angular distribution of the photon is determined to be $1 + \alpha \cos^2 \theta$, $\alpha = 1.3 \pm 0.5$, consistent with its E1 nature.

DISCUSSION

• In the lowest order, when the spin-orbit splitting is perturbatively small $M(^{3}P) = \langle M(^{3}P_{J}) \rangle = [5M(^{3}P_{2}) + 3M(^{3}P_{1}) + M(^{3}P_{0})]/9 = 3525.4 \pm 0.1 \text{ MeV} (PDG)$ Our determination of

$$M(h_c) = 3525.35 \pm 0.19 \pm 0.15 \text{ MeV}$$

leads to

$\Delta M_{hf}(1P) = -0.05 \pm 0.19 \pm 0.16 \; {\rm MeV}$

which is consistent with the lowest order expectation that $\Delta M_{hf}(1P) = 0$.

• It has been pointed out (mainly by A. Martin and J. M. Richard) that the $\vec{L} \cdot \vec{S}$ splitting with $M(\chi_{c2}) - M(\chi_{c0}) = 111$ MeV can hardly be considered perturbatively small.

The triplet mass $M({}^{3}P)$ should not be equated with the average obtained above, but should be obtained by turning off the $\vec{L} \cdot \vec{S}$ and tensor parts in the potential model calculations.

DISCUSSION, cont'd

• At our request, T. Barnes (priv. comm.) has done so, and obtains $M(^{3}P) = 3516$ MeV, whereas in the same calculation, $\langle M(^{3}P_{J}) \rangle = 3525$ MeV. This corresponds to the true prediction of the calculation being

$$\Delta M_{hf}(1P) = -9 \text{ MeV}, \quad \text{not} = 0$$

- Admittedly, the result from these potential model calculations depend very much on how the hyperfine contact interaction (?) is regularized in order to use it in a Schroedinger equation. Nevertheless, caution should be exercised in interpreting our result as confirming the perturbative prediction, $\Delta M_{hf}(1P) = 0$.
- We can only hope that this problem can be resolved one day by lattice calculations of sufficient precision. The presently available lattice results have stated errors $\gtrsim\pm20$ MeV in all masses.

Northwestern University