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Motivation

Measurement of

top quark mass with δmt ≈ 100 MeV [Martinez, Miquel ’02].
top quark width (δΓt ≈ 30 MeV), coupling constants etc.

Study QCD effects of ”toponium”.

Current status: NNLO results show
large uncertainties in the region of the
resonance [Beneke, Signer, Smirnov; Hoang,

Teubner; Melnikov, Yelkovsky; Yakovlev; Nagano

et al.; Penin, Pivovarov ’98-’99]:

RG improvement ⇒ NNLL

Fixed order ⇒ NNNLO
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Fixed order approach

(Partial) NNLL shows improved scale behaviour [Hoang et al. ’02].

Main effect comes from logs at NNNLO [Pineda, Signer ’06].

NNNLO needs inclusion of ultrasoft effects for the first time.

Cross section: R =
σttX
σµ+µ−

= 18πe2
t

m2
t

Im G (0, 0;E + iΓt)

Not included: axial-vector part, EW effects [Hoang, Reißer ’04; Kühn et al. 90s]

Expansion in fixed order PT (in αS and v):
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Effective theory

The expansion of v and αs is done systematically in the
framework of effective theories.

Method:

Identify the scales in the given expansion.

hard l0 ∼ m,~l ∼ m
soft l0 ∼ mv ,~l ∼ mv

potential l0 ∼ mv2,~l ∼ mv
ultrasoft l0 ∼ mv2,~l ∼ mv2

Integrate out the higher modes step by step.

QCD ⇒ NRQCD ⇒ PNRQCD
[Caswell, Lepage ’86] [Pineda, Soto ’97;

Luke, Manohar, Rothstein ’99]
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Hard matching

Matching of the QCD vector current (→ Peter Marquard’s talk).

j i = cv ψ
†σiχ+

dv

6m2
ψ†σi D2χ+ . . .

Matching of the NRQCD Lagrangian.

Current status:

c
(2)
v (2-loop) known [Beneke, Signer, Smirnov; Czarnecki, Melnikov ’97]

c
(3)
v (3-loop) nf part known [Marquard et al. ’06]

d
(1)
v (1-loop) known [Luke, Savage ’97]

NRQCD matching (1-loop) [Manohar ’97; Wüster ’03]
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Soft/potential matching

Matching of the PNRQCD Lagrangian

LPNRQCD = ψ†(x)
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4παsCF
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Current status:

V(2)
C (2-loop) known [Schröder ’98]

V(3)
C (3-loop) only Padé estimates available [Chishtie, Elias ’01]

V(2)
1/m (2-loop) known [Kniehl et al. ’01], but O(ε) parts missing

V(1)
1/m2 ,V

(1)
p (1-loop) known [Kniehl et al. ’02; Wüster ’03]
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Perturbative approach

Calculation of the Green function in perturbation theory:
Perturbative treatment of the potentials:

V = −
αsCF

r
+ δV1 + δV2 + δV3 + δV3,c.t. + ...

G = G0 − G0δV1G0 − G0δV2G0 + G0δV1G0δV1G0

−G0(δV3 + δV3,c.t.)G0 + 2G0δV1G0δV2G0 − G0δV1G0δV1G0δV1G0

+ δGus + ...

Coulomb corrections completed [Beneke,Kiyo,K.S. ’05].

Non-Coulomb corrections completed.

Ultrasoft corrections completed.

Add counter terms to the potential coefficients to make them finite
and subtract c.t. back from US correction.
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Potential insertions

Strategy:

Identify the divergent structure of the Feynman diagrams.

Divide the potential insertion into diagrams with the different
divergent structures.

Example: 1/r2 single insertion:

Z 4Y
i=1

dd−1pi

(2π)d−1

(2π)d−1δ(d−1)(p1 − p2)

p2
1/m − E

1

[(p2 − p3)
2]

1
2
+ε

G̃
(>1ex)
C (p3, p4)

Z 2Y
i=1

dpi

(2π)

"
1

ε
+ F 0(p2) + F 1(p2)ε+ ...

#
G̃

(>1ex)
C (p1, p2)
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The US correction

δGus =
h
µ̃2ε
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,

δU contains octet Green function.

δU is UV finite after subtraction of δṼc.t. and δddiv
v .

Then same strategy as for potential insertions is applied to
calculate the (divergent) Feynman integrals.
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Total result

We calculated the cross section as well as quarkonium energy
level and wave function corrections.

Checked: divergent parts cancel once the potential and US
parts and the vector current are combined.

Result for cross section contains (sums of) Gamma and
Polygamma functions and Hypergeometric functions (for
potential insertions) and numerical integrals (for US
correction).

Result for wave function expressed by (nested) harmonic sums
and ζ functions for arbitrary quantum number n, US constant
part known only numerically.
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Wave function

Wave function related to the residue Zn of the two point function:

�
qµqν − gµνq2

�
Π(q2) = i

Z
ddx e iqx 〈Ω|T (jµ(x)jν(0))|Ω〉, jµ = Q̄γµQ

Zn = cv

�
cv −

En

m

�
1 +

dv

3

�
+ · · ·

�
|ψn(0)|2

Z1 is indication for the height of the tt̄ cross section and related
to the quarkonium decay (→ Antonio Pineda’s talk).

NNNLO wave function corrections completed up to unknown
matching coefficients:

Coulomb corrections [Penin, Smirnov, Steinhauser; Beneke,Kiyo,K.S. ’05].

Non-Coulomb corrections [Beneke,Kiyo,K.S. ’07].

US corrections [Beneke,Kiyo,Penin ’07].
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Wave function: ”Toponium” 1S results

Result for Z1 at µ = 30 GeV:

Z1 =

(
mtαsCF

8π

)3(
1− 2.13αs + 22.6α2

s + [−33.0 + 37.6c3,nf
]α3

s

)

NNNLO about 1% at
µ = 30GeV.

Unknown matching coefficients
neglected.

Reduced scale dependence.

But: unstable for µ < 25 GeV.
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Cross section: Coulomb part

Coulomb corrections can be calculated by numerical solution
of the Schrödinger equation [Peskin, Strassler ’91].

This corresponds to resummation of multiple potential
insertions (here ”NNNLO exact”).

Comparison to perturbative result shows significant difference
at low scales ⇒ scale behavior is an artifact of PT.
So: Only scales µ > 25 GeV are safe!
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Cross section: (almost) complete NNNLO

All known parts included; unknown parts = 0.

Good convergence! But maybe accidental due to unknown
parts (see next slide).

Scale dependence reduced significantly to about 10%.
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Effect of unknown contributions

Assume xn+1/xn = const to estimate size of unknown parts.

Effect of c3 is about 10%.

Effect of O(ε) parts of the potentials is small.
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Cross Section: peak position NNNLO vs. NNLL

Scale dependence below 100 MeV and similar to NNLL.

But: shifted by about 100 MeV due to non-log terms.

Contributions from c3 are essential.

Experimental accuracy reachable (in PS mass scheme!).
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Cross Section: peak height NNNLO vs. NNLL

Scale dependence similar to NNLL.

Shifted by about 10-15% compared to NNLL to due to
non-log terms.
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Conclusion

We almost completed the NNNLO QCD quarkonium wave function
and the tt̄ QCD cross section at threshold.

Perturbation series converges.

Error from scale dependence reduce significantly.

Experimental accuracy can be met.

Missing parts from QCD:

3-loop vector current coefficient c3 (big impact).

Some potential matching coefficients.

The EW and finite width effects needs further studies.
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Backup slide I
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