NNNLO corrections to $t\bar{t}$ production near threshold

Kurt Schuller (RWTH Aachen)

In collaboration with M. Beneke, Y. Kiyo and A.A. Penin.

QWG 2007 @ DESY Hamburg, 20.10.2007

Motivation			
0	000000	0000000	0
Motivation			

- Measurement of
 - top quark mass with $\delta m_t pprox$ 100 MeV [Martinez, Miquel '02].
 - top quark width ($\delta\Gamma_t \approx 30$ MeV), coupling constants etc.
- Study QCD effects of "toponium".

Current status: NNLO results show large uncertainties in the region of the resonance [Beneke, Signer, Smirnov; Hoang, Teubner; Melnikov, Yelkovsky; Yakovlev; Nagano et al.; Penin, Pivovarov '98-'99]:

- RG improvement \Rightarrow NNLL
- Fixed order \Rightarrow NNNLO

- (Partial) NNLL shows improved scale behaviour [Hoang et al. '02].
- Main effect comes from logs at NNNLO [Pineda, Signer '06].
- NNNLO needs inclusion of ultrasoft effects for the first time.

Cross section:
$$R = \frac{\sigma_{t\bar{t}X}}{\sigma_{\mu^+\mu^-}} = \frac{18\pi e_t^2}{m_t^2} \operatorname{Im} G(0,0; E + i\Gamma_t)$$

Not included: axial-vector part, EW effects [Hoang, Reißer '04; Kühn et al. 90s]

Expansion in fixed order PT (in α_s and v):

$$R = v \sum_{k} \left(\frac{\alpha_{S}}{v}\right)^{k} \left\{ 1 + \left(\begin{array}{c} \alpha_{S} \\ v \end{array}\right)_{NLO} + \left(\begin{array}{c} \alpha_{S}^{2} \\ \alpha_{S}v \\ v^{2} \end{array}\right)_{NNLO} + \left(\begin{array}{c} \alpha_{S}^{2} \\ \alpha_{S}^{2}v, \alpha_{S}v^{2} \\ v^{3} \end{array}\right)_{NNNLO} + \dots \right\}$$

	Method	
	00000	
Effective theory		

• The expansion of v and α_s is done systematically in the framework of effective theories.

Method:

• Identify the scales in the given expansion.

 $\begin{array}{ll} \mbox{hard} & l_0 \sim m, \vec{l} \sim m \\ \mbox{soft} & l_0 \sim mv, \vec{l} \sim mv \\ \mbox{potential} & l_0 \sim mv^2, \vec{l} \sim mv \\ \mbox{ultrasoft} & l_0 \sim mv^2, \vec{l} \sim mv^2 \end{array}$

• Integrate out the higher modes step by step.

• QCD
$$\Rightarrow$$
 NRQCD \Rightarrow [Caswell, Lepage '86]

PNRQCD [Pineda, Soto '97; Luke, Manohar, Rothstein '99]

	Method o●oooo	
Hard matching		

Matching of the QCD vector current (→ Peter Marquard's talk).

$$j^{i} = \mathbf{c_{v}} \psi^{\dagger} \sigma^{i} \chi + \frac{\mathbf{d_{v}}}{6m^{2}} \psi^{\dagger} \sigma^{i} \mathbf{D}^{2} \chi + \dots$$

• Matching of the NRQCD Lagrangian.

Current status:

 $c_{V}^{(2)}$ (2-loop) known [Beneke, Signer, Smirnov; Czarnecki, Melnikov '97] $c_{V}^{(3)}$ (3-loop) n_{f} part known [Marquard et al. '06] $d_{V}^{(1)}$ (1-loop) known [Luke, Savage '97] NRQCD matching (1-loop) [Manohar '97; Wüster '03]

	Method	
	000000	
Soft/potentia	al matching	

Matching of the PNRQCD Lagrangian

$$\begin{aligned} \mathcal{L}_{PNRQCD} &= \psi^{\dagger}(x) \left(i\partial^{0} + \frac{\partial^{2}}{2m} + \frac{\partial^{4}}{8m^{3}} \right) \psi(x) + \chi^{\dagger}(x) \left(i\partial^{0} - \frac{\partial^{2}}{2m} + \frac{\partial^{4}}{8m^{3}} \right) \chi(x) \\ &+ \int d^{3}\mathbf{r} \left[\psi^{\dagger} \psi \right] (x + \mathbf{r}) \, V(\mathbf{r}) \left[\chi^{\dagger} \chi \right] (x) - g_{s} \psi^{\dagger}(x) \mathbf{x} \mathbf{E}(t, \mathbf{0}) \psi(x) - g_{s} \chi^{\dagger}(x) \mathbf{x} \mathbf{E}(t, \mathbf{0}) \chi(x) \\ \tilde{V}(\mathbf{p}, \mathbf{p}') &= -\frac{4\pi \alpha_{s} C_{F}}{\mathbf{q}^{2}} \left[\frac{\mathcal{V}_{C} - \mathcal{V}_{1/m}}{m} \frac{\pi^{2} |\mathbf{q}|}{m} + \frac{\mathcal{V}_{1/m^{2}}}{m^{2}} \frac{\mathbf{q}^{2}}{m^{2}} + \frac{\mathcal{V}_{P}}{2m^{2}} \frac{\mathbf{p}^{2} + \mathbf{p}'^{2}}{2m^{2}} \right]. \end{aligned}$$

Current status:

$$\begin{array}{l} \mathcal{V}_{C}^{(2)} \ (2\text{-loop}) \ \text{known} \ [\text{Schröder '98}] \\ \mathcal{V}_{C}^{(3)} \ (3\text{-loop}) \ \text{only Padé estimates available [Chishtie, Elias '01]} \\ \mathcal{V}_{1/m}^{(2)} \ (2\text{-loop}) \ \text{known} \ [\text{Kniehl et al. '01], but } O(\epsilon) \ \text{parts missing} \\ \mathcal{V}_{1/m^{2}}^{(1)}, \mathcal{V}_{p}^{(1)} \ (1\text{-loop}) \ \text{known} \ [\text{Kniehl et al. '02; Wüster '03]} \end{array}$$

Calculation of the Green function in perturbation theory:

• Perturbative treatment of the potentials:

$$V = -\frac{\alpha_{s}C_{F}}{r} + \delta V_{1} + \delta V_{2} + \delta V_{3} + \delta V_{3,c.t.} + \dots$$

$$G = G_{0} - G_{0}\delta V_{1}G_{0} - G_{0}\delta V_{2}G_{0} + G_{0}\delta V_{1}G_{0}\delta V_{1}G_{0}$$

$$- G_{0}(\delta V_{3} + \delta V_{3,c.t.})G_{0} + 2G_{0}\delta V_{1}G_{0}\delta V_{2}G_{0} - G_{0}\delta V_{1}G_{0}\delta V_{1}G_{0}\delta V_{1}G_{0}$$

$$+ \delta G_{us} + \dots$$

- Coulomb corrections completed [Beneke,Kiyo,K.S. '05].
- Non-Coulomb corrections completed.
- Ultrasoft corrections completed.

Add counter terms to the potential coefficients to make them finite and subtract c.t. back from US correction.

	Method		
Dotontial incortion	000000 C	0000000	0
Fotential insertion	5		

- Identify the divergent structure of the Feynman diagrams.
- Divide the potential insertion into diagrams with the different divergent structures.

	Method		
Dotontial incortion	000000 C	0000000	0
Fotential insertion	5		

- Identify the divergent structure of the Feynman diagrams.
- Divide the potential insertion into diagrams with the different divergent structures.

	Method		
00	000000	0000000	0
Potential insertion	s		

- Identify the divergent structure of the Feynman diagrams.
- Divide the potential insertion into diagrams with the different divergent structures.

	Method		
00	000000	0000000	0
Potential insertion	s		

- Identify the divergent structure of the Feynman diagrams.
- Divide the potential insertion into diagrams with the different divergent structures.

	Method		
00	000000	0000000	0
The US correction			

$$\begin{split} \delta G_{us} &= \left[\tilde{\mu}^{2\epsilon} \right]^2 \int \frac{d^{d-1}\ell}{(2\pi)^{d-1}} \frac{d^{d-1}\ell'}{(2\pi)^{d-1}} \Bigg\{ \left(-\delta d_{\nu}^{\text{div}} \right) \frac{\ell^2 + \ell'^2}{6m^2} \, \tilde{G}_{\mathcal{C}}^{(s)}(\ell,\ell';E) \\ &+ \left[\tilde{\mu}^{2\epsilon} \right]^2 \int \frac{d^{d-1}\mathbf{p}}{(2\pi)^{d-1}} \frac{d^{d-1}\mathbf{p}'}{(2\pi)^{d-1}} \, \tilde{G}_{\mathcal{C}}^{(s)}(\ell,\mathbf{p};E) \Big[\delta U + \delta \tilde{V}_{3,c.t.} \Big] \, \tilde{G}_{\mathcal{C}}^{(s)}(\mathbf{p}',\ell';E) \Bigg\}, \end{split}$$

- δU contains octet Green function.
- δU is UV finite after subtraction of $\delta \tilde{V}_{c.t.}$ and δd_v^{div} .
- Then same strategy as for potential insertions is applied to calculate the (divergent) Feynman integrals.

	Results ●0000000	
Total result		

- We calculated the cross section as well as quarkonium energy level and wave function corrections.
- Checked: divergent parts cancel once the potential and US parts and the vector current are combined.
- Result for cross section contains (sums of) Gamma and Polygamma functions and Hypergeometric functions (for potential insertions) and numerical integrals (for US correction).
- Result for wave function expressed by (nested) harmonic sums and ζ functions for arbitrary quantum number n, US constant part known only numerically.

	Results	
	0000000	
Wave function		

Wave function related to the residue Z_n of the two point function:

$$Z_{q}^{\mu}q^{\nu} - g^{\mu\nu}q^{2} \Pi(q^{2}) = i \int d^{d}x \, e^{iqx} \langle \Omega | T(j^{\mu}(x)j^{\nu}(0)) | \Omega \rangle, \qquad j^{\mu} = \bar{Q}\gamma^{\mu}Q$$
$$Z_{n} = c_{\nu} \left[c_{\nu} - \frac{E_{n}}{m} \left(1 + \frac{d_{\nu}}{3} \right) + \cdots \right] |\psi_{n}(0)|^{2}$$

 Z_1 is indication for the height of the $t\bar{t}$ cross section and related to the quarkonium decay (\rightarrow Antonio Pineda's talk).

NNNLO wave function corrections completed up to unknown matching coefficients:

- Coulomb corrections [Penin, Smirnov, Steinhauser; Beneke, Kiyo, K.S. '05].
- Non-Coulomb corrections [Beneke, Kiyo, K.S. '07].
- US corrections [Beneke,Kiyo,Penin '07].

Result for Z_1 at $\mu = 30$ GeV:

$$Z_1 = \left(\frac{m_t \alpha_s C_F}{8\pi}\right)^3 \left(1 - 2.13\alpha_s + 22.6\alpha_s^2 + [-33.0 + 37.6_{c_3, n_f}]\alpha_s^3\right)$$

- NNNLO about 1% at $\mu = 30$ GeV.
- Unknown matching coefficients neglected.
- Reduced scale dependence.
- But: unstable for $\mu < 25$ GeV.

		Results	
Cross section: (oulomb part		Ŭ

- Coulomb corrections can be calculated by numerical solution of the Schrödinger equation [Peskin, Strassler '91].
- This corresponds to resummation of multiple potential insertions (here "NNNLO exact").
- Comparison to perturbative result shows significant difference at low scales ⇒ scale behavior is an artifact of PT.
 So: Only scales μ > 25 GeV are safe!

- All known parts included; unknown parts = 0.
- Good convergence! But maybe accidental due to unknown parts (see next slide).
- Scale dependence reduced significantly to about 10%.

- Assume $x_{n+1}/x_n = const$ to estimate size of unknown parts.
- Effect of c_3 is about 10%.
- Effect of $O(\epsilon)$ parts of the potentials is small.

- Assume $x_{n+1}/x_n = const$ to estimate size of unknown parts.
- Effect of c_3 is about 10%.
- Effect of $O(\epsilon)$ parts of the potentials is small.

- Scale dependence below 100 MeV and similar to NNLL.
- But: shifted by about 100 MeV due to non-log terms.
- Contributions from *c*₃ are essential.
- Experimental accuracy reachable (in PS mass scheme!).

- Scale dependence similar to NNLL.
- Shifted by about 10-15% compared to NNLL to due to non-log terms.

		Conclusion
Conclusion		

We almost completed the NNNLO QCD quarkonium wave function and the $t\bar{t}$ QCD cross section at threshold.

- Perturbation series converges.
- Error from scale dependence reduce significantly.
- Experimental accuracy can be met.

Missing parts from QCD:

- 3-loop vector current coefficient c_3 (big impact).
- Some potential matching coefficients.

The EW and finite width effects needs further studies.

0.0

µ [GeV]

0.6

40

60

μ [GeV]

80

100

120