Perspectives of In-Medium Quarkonium Behaviour

Helmut Satz

Universität Bielefeld, Germany

QWG Meeting October 2007

DESY, Hamburg

What are the main open questions at present?

What are the main open questions at present?

- Quarkonium Survival in the Quark-Gluon Plasma
- Quarkonium Production, Survival, Enhancement in Nuclear Collisions

What are the main open questions at present?

- Quarkonium Survival in the Quark-Gluon Plasma
- Quarkonium Production, Survival, Enhancement in Nuclear Collisions

Here address the first:

quarkonia in finite T lattice QCD & in potential studies

• Quarkonium Survival in Finite T Lattice QCD

Determine $Q\bar{Q}$ spectrum $\sigma(\omega, T)$:

quarkonium correlators at fixed quantum numbers i

$$G_i(au,T) = \int\! d\omega \sigma_i(\omega,T) K(au,\omega,T)$$

normalize to correlators $G_i^0(au,T)$ with $\sigma_i(\omega,T=0),$ schematically

 $\sigma_i(\omega,T=0)\sim A_i(0)\delta(\omega-M_i)+A_c(\omega,0) heta(\omega-\omega_c)$

sharp resonance plus continuum

resonance weight \sim wave function at origin

 $|A_i(0)\sim |\Phi_i(r=0,T=0)|^2$

calculate correlator ratio for J/ψ :

no change with T up to about 1.5 T_c

calculate correlator ratio for $J/\psi(1S)$:

In contrast, $\chi_c(1P)$

strongly modified at $\sim 1.1 T_c$

In contrast, $\chi_c(1P)$

strongly modified at $\sim 1.1~T_c$

reconstruct $\sigma(\omega, T)$ via MEM: $\chi_c(1P)$ already dissolved at about 1.1 T_c

Is this really true?

Zero momentum modes? [Umeda]

What do these results imply for J/ψ survival?

What do these results imply for J/ψ survival?

• one solution to
$$G_i(\omega,T)/G_i^0(\omega,T)=1$$
 is
 $\sigma_i(\omega,T)=\sigma(\omega,0)$

temperature-independent spectrum up to some T_{dis} but: higher resonances dissolve, continuum shifts down What do these results imply for J/ψ survival?

ullet one solution to $G_i(\omega,T)/G_i^0(\omega,T)=1$ is $\sigma_i(\omega,T)=\sigma(\omega,0)$

temperature-independent spectrum up to some $T_{\rm dis}$ but: higher resonances dissolve, continuum shifts down

• another solution to $G_i(\omega,T)/G_i^0(\omega,T) \simeq 1$ is

$$egin{array}{rcl} A_i(0)\delta(\omega-M)&
ightarrow&rac{A_i(T)}{\pi}rac{\Gamma(T)}{(\omega-M_i)^2+\Gamma^2(T)} \end{array}$$

replacing sharp resonance by smeared resonance with lower and wider peak, same overall contribution $A_i(0)$ temperature-dependent wave function at origin,

 $|A_i(T)\sim |\Phi_i(T,r=0)|^2$

determines width $\Gamma(T)$:

$$rac{A_i(T)}{\pi} / \, d\omega rac{\Gamma(T)}{(\omega-M_i)^2+\Gamma^2(T)} = A_i(0)$$

Present lattice data $(G(T) \simeq G^0(T))$ cannot distinguish as long as

- width remains below statistical peak width and
- overall integral remains fixed
- \Rightarrow "gradual melting":

peak height $\downarrow \leftrightarrow$ peak width \uparrow

result by construction in accord lattice correlators

• Quarkonium Survival in Potential Models

Define heavy quark potential V(r, T),

solve Schrödinger equation

$$\left\{2m_c-rac{1}{m_c}
abla^2+V(r,T)
ight\}\Phi_i(r,T)=M_i(T)\Phi_i(r,T)$$

determine quarkonium wave functions $\Phi_i(r, T)$, radii $\bar{r}_i(T)$, binding energies $\Delta_i(T)$

 $\bar{r}_i(T) \to \infty, \ \Delta_i(T) \to 0$: dissociation, defines $T_{\rm diss}$

• Quarkonium Survival in Potential Models

Define heavy quark potential V(r, T),

solve Schrödinger equation

$$\left\{2m_c-rac{1}{m_c}
abla^2+V(r,T)
ight\}\Phi_i(r,T)=M_i(T)\Phi_i(r,T)$$

determine quarkonium wave functions $\Phi_i(r, T)$, radii $\bar{r}_i(T)$, binding energies $\Delta_i(T)$

 $\bar{r}_i(T) \to \infty, \ \Delta_i(T) \to 0$: dissociation, defines $T_{
m diss}$

Problems & Questions

- 1. how to specify V(r,T)?
- 2. is $T_{\text{diss}} = T_{\text{surv}}(\text{lattice})$?
- 3. do correlators agree with lattice correlators?
- 4. large radii, small binding energy?

1. Quarkonium Potential

lattice QCD determines the difference $F_1(r, T)$ of colour singlet free energy of system with & without $Q\bar{Q}$ pair

from thermodynamic relation

$$m{F} = m{U} - m{T}m{S} \Rightarrow m{U} = -m{T}^2igg(rac{\partial[m{F}/m{T}]}{\partial T}igg)$$

obtain difference $U_1(r, T)$ of colour singlet internal energy

1. Quarkonium Potential

lattice QCD determines the difference $F_1(r, T)$ of colour singlet free energy of system with & without $Q\bar{Q}$ pair

from thermodynamic relation

$$oldsymbol{F} = oldsymbol{U} - oldsymbol{T}oldsymbol{S} \Rightarrow oldsymbol{U} = -oldsymbol{T}^2igg(rac{\partial[oldsymbol{F}/oldsymbol{T}]}{\partialoldsymbol{T}}igg)$$

obtain difference $U_1(r, T)$ of colour singlet internal energy

Possible Potentials:

 $-V(r,T)=F_1(r,T)$

[Digal et al. 01, Shuryak et al. 04, Wong 05, Alberico et al. 05, Moczy et al. 07]

 $-V(r,T)=U_1(r,T)$

[Wong 05, Alberico et al. 05, Rapp et al. 05, Digal et al. 07]

– linear combination of F_1 and U_1

[Wong 05, Alberico et al. 06]

General feature: U_1 provides stronger binding than F_1

– linear combination of F_1 and U_1

[Wong 05, Alberico et al. 06]

General feature: U_1 provides stronger binding than F_1

2. Dissociation Temperatures

$V(r,T)=F_1(r,T):$	state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
	T_d/T_c	1.2	1	1
$V(r,T)=U_1(r,T):$	state	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
	T_d/T_c	2	1.2	1.1

linear combination: in-between

3. Correlators in Potential Models

construct spectral function from ground state resonance, higher resonances, continuum

recall at T = 0

 $\sigma_i(\omega,T=0)\sim A_i(0)\delta(\omega-M_i)+A_c(\omega,0) heta(\omega-\omega_c)$

potential models: $A_i(T)$ decreases strongly with T $M_i(T)$ approximately T-independent

3. Correlators in Potential Models

construct spectral function from ground state resonance, higher resonances, continuum

recall at T = 0

 $\sigma_i(\omega,T=0)\sim A_i(0)\delta(\omega-M_i)+A_c(\omega,0) heta(\omega-\omega_c)$

potential models: $A_i(T)$ decreases strongly with T $M_i(T)$ approximately T-independent

Trial 1: [Mocsy & Petreczky] $V = U_1, \ \delta(\omega - M_i)$ for ground state resonance, continuum *T*-independent

 \Rightarrow strong disagreement

reason:

ground state resonance reduced in amplitude, but not increased in width

reason:

ground state resonance reduced in amplitude, but not increased in width

Trial 2: [Mocsy & Petreczky] $V = F_1$, ground state disappears at $T/T_c = 1.2$, strong continuum above ~ 2 m_c \Rightarrow "simulates" lattice peak

distinguish: lattice data

- with better peak resolution,
- with better width resolution

Trial 3: -tbd-

 $V = U_1,$ correct for polarization energy $(V(r = \infty, T) = 0),$ width \sim amplitude, continuum threshold decreasing

"standard model": does it work?

Trial 3: -tbd-

 $V = U_1,$ correct for polarization energy $(V(r = \infty, T) = 0),$ width \sim amplitude, continuum threshold decreasing

"standard model": does it work?

4. Inherent Problem of Potential Models

As $T \to T_{\text{diss}}$: $\bar{r}_i(T) \to \infty$ $\Delta_i(T) \to 0$ what about $\bar{r}_i > 1/T_{\text{diss}}$, $\Delta_i < T_{\text{diss}}$? potential scales vs. medium scales?

