$\eta_b \rightarrow \mathbf{J}/\psi \ \mathbf{J}/\psi$

Pietro Santorelli

Università "Federico II" & INFN, Napoli, Italy

International Workshop on Heavy Quarkonium 2007

Pietro Santorelli (Napoli, Italy)

 $\eta_b \rightarrow J/\psi J/\eta$

QWG 1/16

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

• The $\eta_c \rightarrow \phi \phi$ and the $\eta_b \rightarrow J/\psi J/\psi$ decays

• The $\eta_b \rightarrow D\overline{D^*}$ and the $D\overline{D^*} \rightarrow J/\psi J/\psi$ rescattering

Conclusions

Based on the paper P.S., *Long distance contributions to the* $\eta_b \rightarrow J/\psi J/\psi$ *decay*, hep-ph/0703232

Pietro Santorelli (Napoli, Italy)

 $\eta_b \rightarrow J/\psi J/\psi$

▶ ≣ ৩৭৫ QWG 2/16

< 日 > < 同 > < 回 > < 回 > < □ > <

Outline

- The $\eta_c \rightarrow \phi \phi$ and the $\eta_b \rightarrow J/\psi J/\psi$ decays
- The $\eta_b \rightarrow D\overline{D^*}$ and the $D\overline{D^*} \rightarrow J/\psi J/\psi$ rescattering

Conclusions

Based on the paper P.S., *Long distance contributions to the* $\eta_b \rightarrow J/\psi J/\psi$ *decay*, hep-ph/0703232

Pietro Santorelli (Napoli, Italy)

 $\eta_b \rightarrow J/\psi J/\psi$

► = ∽ < < QWG 2/16

< 日 > < 同 > < 回 > < 回 > < □ > <

Outline

- The $\eta_c \rightarrow \phi \phi$ and the $\eta_b \rightarrow J/\psi J/\psi$ decays
- The $\eta_b \rightarrow D\overline{D^*}$ and the $D\overline{D^*} \rightarrow J/\psi J/\psi$ rescattering
- Conclusions

Based on the paper P.S., Long distance contributions to the $\eta_b \rightarrow J/\psi J/\psi$ decay, hep-ph/0703232

Pietro Santorelli (Napoli, Italy)

 $\eta_b \rightarrow J/\psi J/\psi$

► = ∽ < < QWG 2/16

< 日 > < 同 > < 回 > < 回 > < □ > <

$$\eta_c \rightarrow \phi \phi$$
 and $\eta_b \rightarrow J/\psi J/\psi$

Braaten, Fleming and Leibovich, 2001

$$\lim_{m_b\to\infty,m_c \text{ finite}} \mathcal{B}r[\eta_b\to J/\psi J/\psi] \sim \left(\frac{1}{m_b}\right)^4$$

Brodsky and Lepage, 1981

$$\frac{\mathcal{B}r[\eta_b \to J/\psi J/\psi]}{\mathcal{B}r[\eta_c \to \phi\phi]} \sim \left(\frac{m_c}{m_b}\right)^4 \equiv x \approx 10^{-2}$$

$$\mathcal{B}r[\eta_b \rightarrow J/\psi J/\psi] = 7 \times 10^{-4\pm 1}$$

$$x \in [10^{-2}, 1]$$
 & $Br[\eta_c \to \phi\phi] = 7 \times 10^{-3}$

A lot of events are predicted at Tevatron run II

$$\eta_b \to J/\psi J/\psi \to \mu^+ \mu^- \mu^+ \mu^-$$

Pietro Santorelli (Napoli, Italy)

 $\eta_{\rm b} \rightarrow J/\psi J/\psi$

QWG 3/16

$$\eta_c \rightarrow \phi \phi$$
 and $\eta_b \rightarrow J/\psi J/\psi$

Maltoni & Polosa calculations

• A direct calculation, at LO, of the inclusive process has been done

 $\mathcal{B}r[\eta_b \to c\bar{c}c\bar{c}c] = 1.8^{+2.3}_{-0.8} imes 10^{-5}$

 In NRQCD Γ[η_b(η_c) → VV] = 0 at LO in α_s and v². Rescaling non-perturbative and higher order contributions by the same factor is not reliable.

Jia estimate

• $\mathcal{B}r[\eta_b \to J/\psi \; J/\psi] = (0.5 \; \div \; 6.6) \; \times \; 10^{-8}$

$$\eta_c \rightarrow \phi \phi$$
 and $\eta_b \rightarrow J/\psi J/\psi$

Maltoni & Polosa calculations

• A direct calculation, at LO, of the inclusive process has been done

 $\mathcal{B}r[\eta_b \to c\bar{c}c\bar{c}\bar{c}] = 1.8^{+2.3}_{-0.8} \times 10^{-5}$

 In NRQCD Γ[η_b(η_c) → VV] = 0 at LO in α_s and v². Rescaling non-perturbative and higher order contributions by the same factor is not reliable.

Jia estimate

•
$$\mathcal{B}r[\eta_b \to J/\psi \; J/\psi] = (0.5 \div 6.6) \times 10^{-8}$$

Jia,2006

$$\begin{aligned} \left. \mathcal{B}r[\eta_c \to \phi \ \phi] \right|_{th} &= (0.3 \ \div \ 1.5) \ \times \ 10^{-5} \\ \left. \mathcal{B}r[\eta_c \to \phi \ \phi] \right|_{exp} &= (2.7 \ \pm \ 0.5) \times 10^{-3} \end{aligned}$$

Is the case of $\eta_b \rightarrow J/\psi J/\psi$ similar to $\eta_c \rightarrow \phi \phi$?

What kind of mechanisms could be responsible for the enhancement?

Final State	• J/ψ has large coupling to $(D^{(*)}\overline{D^{(*)}})$))
Interactions?		

 $10^{-3} \leqslant \mathcal{B}r[\eta_b o D\overline{D^*}] \leqslant 10^{-2} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] \approx 0 \qquad Maltor$

 $\mathcal{B}r[\eta_b o D\overline{D^*}] \sim 10^{-5} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] pprox 10^{-8}$ Ji

$$\begin{split} \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{th} &= (0.3 \ \div \ 1.5) \ \times \ 10^{-5} \\ \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{exp} &= (2.7 \ \pm \ 0.5) \times 10^{-3} \end{split}$$

Is the case of $\eta_b \rightarrow J/\psi J/\psi$ similar to $\eta_c \rightarrow \phi \phi$?

What kind of mechanisms could be responsible for the enhancement?

Final State	• J/ψ has large coupling to $(D^{(*)}\overline{D^{(*)}})$
Interactions?	• η_b couples to $D\overline{D^*}$

 $10^{-3} \leqslant \mathcal{B}r[\eta_b \to D\overline{D^*}] \leqslant 10^{-2} \qquad \mathcal{B}r[\eta_b \to D^*\overline{D^*}] \approx 0 \qquad Malton$

 $\mathcal{B}r[\eta_b o D\overline{D^*}] \sim 10^{-5} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] pprox 10^{-8}$ of

$$\begin{split} \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{th} &= (0.3 \ \div \ 1.5) \ \times \ 10^{-5} \\ \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{exp} &= (2.7 \ \pm \ 0.5) \times 10^{-3} \end{split}$$

Is the case of $\eta_b \rightarrow J/\psi J/\psi$ similar to $\eta_c \rightarrow \phi \phi$?

What kind of mechanisms could be responsible for the enhancement?

Final State Interactions?

- J/ψ has large coupling to $(D^{(*)}\overline{D^{(*)}})$
- η_b couples to $D\overline{D^*}$

 $10^{-3} \leqslant \mathcal{B}r[\eta_b o D\overline{D^*}] \leqslant 10^{-2} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] pprox 0 \qquad {\it Malter}$

 $\mathcal{B}r[\eta_b \to D\overline{D^*}] \sim 10^{-5} \qquad \mathcal{B}r[\eta_b \to D^*\overline{D^*}] \approx 10^{-8}$

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\begin{split} \mathcal{B}r[\eta_{c} \rightarrow \phi \phi] \Big|_{th} &= (0.3 \div 1.5) \times 10^{-5} \\ \mathcal{B}r[\eta_{c} \rightarrow \phi \phi] \Big|_{exp} &= (2.7 \pm 0.5) \times 10^{-3} \end{split}$$

Is the case of $\eta_b \rightarrow J/\psi J/\psi$ similar to $\eta_c \rightarrow \phi \phi$?

What kind of mechanisms could be responsible for the enhancement?

Final State	0	J/ψ has large coupling to $(D^{(*)}\overline{D^{(*)}})$
Interactions?	0	η_b couples to $D\overline{D^*}$

 $10^{-3} \leqslant \mathcal{B}r[\eta_b o D\overline{D^*}] \leqslant 10^{-2} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] pprox 0 \qquad Maltoni I$

 $\mathcal{B}r[\eta_b o D\overline{D^*}] \sim 10^{-5} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] pprox 10^{-8} \qquad J_{div}$

イロン イロン イヨン イヨン 三日

$$\begin{split} \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{th} &= (0.3 \ \div \ 1.5) \ \times \ 10^{-5} \\ \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{exp} &= (2.7 \ \pm \ 0.5) \times 10^{-3} \end{split}$$

Is the case of $\eta_b \rightarrow J/\psi J/\psi$ similar to $\eta_c \rightarrow \phi \phi$?

What kind of mechanisms could be responsible for the enhancement?

Final State	• J/ψ has large coupling to $(D^{(*)}\overline{D^{(*)}})$
Interactions?	• η_b couples to $D\overline{D^*}$

 $10^{-3} \leqslant \mathcal{B}r[\eta_b o D\overline{D^*}] \leqslant 10^{-2} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] \approx 0$ Maltoni Pol

 $\mathcal{B}r[\eta_b o D\overline{D^*}] \sim 10^{-5} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] \approx 10^{-8}$

$$\begin{split} \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{th} &= (0.3 \ \div \ 1.5) \ \times \ 10^{-5} \\ \mathcal{B}r[\eta_c \to \phi \ \phi] \Big|_{exp} &= (2.7 \ \pm \ 0.5) \times 10^{-3} \end{split}$$

Is the case of $\eta_b \rightarrow J/\psi J/\psi$ similar to $\eta_c \rightarrow \phi \phi$?

What kind of mechanisms could be responsible for the enhancement?

Final State	• J/ψ has large coupling to $(D^{(*)}D^{(*)})$
Interactions?	• η_b couples to $D\overline{D^*}$

 $10^{-3} \leqslant \mathcal{B}r[\eta_b o D\overline{D^*}] \leqslant 10^{-2} \qquad \mathcal{B}r[\eta_b o D^*\overline{D^*}] pprox 0 \qquad Maltoni Polosa$

 $\mathcal{B}r[\eta_b \to D\overline{D^*}] \sim 10^{-5}$ $\mathcal{B}r[\eta_b \to D^*\overline{D^*}] \approx 10^{-8}$ Jia

$\eta_b \rightarrow J/\psi J/\psi$: the Full Amplitude

The full amplitude

 $\mathcal{A}[\eta_b \to J/\psi J/\psi] =$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

$\eta_b \rightarrow J/\psi J/\psi$: the Full Amplitude

The full amplitude

 ${\cal A}[\eta_b \to {J/\psi J/\psi}] =$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ...

$\eta_b \rightarrow J/\psi J/\psi$: the Full Amplitude

The full amplitude

 $\mathcal{A}[\eta_b \to J/\psi J/\psi] =$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

$\eta_b \rightarrow J/\psi J/\psi$: the Full Amplitude

The full amplitude

 $\mathcal{A}[\eta_b \to J/\psi J/\psi] =$

・ 何 ト ・ ヨ ト ・ ヨ ト

The Short Distance Contribution

 $g_{\eta_b JJ}$ can be obtained by evaluating the $\eta_b \rightarrow J/\psi J/\psi$ rate (NRQCD, quark models, etc.)

 $\eta_b \rightarrow J/\psi J/\psi$

The Contribution of Hadron Loops

we evaluate the Absorbitive part

• the Dispersive part, for which the theoretical evaluation is more difficult, would imply even a larger branching ratio

The Contribution of Hadron Loops

- we evaluate the Absorbitive part
- the Dispersive part, for which the theoretical evaluation is more difficult, would imply even a larger branching ratio

 $\eta_b \rightarrow J/\psi J/\psi$

The Absorbitive Part of Hadron Loops By using optical theorem

The Absorbitive Part of Hadron Loops By using optical theorem

The Absorbitive Part of Hadron Loops (cont')

The scattering amplitude $\mathcal{A}[D\overline{D^*} \rightarrow J/\psi J/\psi]$

These couplings are relevant to the calculation of the $\sigma(J/\psi \ \pi \rightarrow D^{(*)} \ \overline{D^{(*)}})$: the "standard" mechanism of J/ψ suppression in heavy ion collisions. However, the J/ψ suppression is also an indication of the quark-gluon plasma formation.

Matsui and Satz, '86

 $\eta_b \rightarrow J/\psi J/\psi$

The Absorbitive Part of Hadron Loops (cont')

The scattering amplitude $\mathcal{A}[D\overline{D^*} \rightarrow J/\psi J/\psi]$

Off-shellness of the exchanged charmed mesons is taken into account by writing the couplings as functions of the variable $t = k^2 = (p_1 - p_3)^2$. There are many calculations of these couplings and of their dependence on the variable t Deandrea, Nardulli and Polosa, 2003 Ivanov, Korner and P.S., 2004 Matheus, et al., 2005

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We use

 $(g_{JDD}, g_{JDD^*}, g_{JD^*D^*}) = (6, 12, 6)$

Pietro Santorelli (Napoli, Italy)

 $\eta_b \rightarrow J/\psi J/\psi$

The Absorbitive Part of Hadron Loops (cont') The scattering amplitude $\mathcal{A}[D\overline{D^*} \rightarrow J/\psi J/\psi]$

We choose the function

$$F(t) = \frac{\Lambda^2 - m_{D^{(*)}}^2}{\Lambda^2 - t}$$

to parametrize the t-dependance. A is a free parameter which should not be far from the value of the $D^{(*)}$ mass. Following H. Y Cheng, Chua and Soni, (2005) we use

 $\Lambda = m_{D^{(*)}} + \Lambda_{QCD} \alpha$

$$\Lambda_{QCD} = 0.22 \; GeV \; \text{ and } \; \alpha \approx 2.2$$

 $\eta_{\rm b} \rightarrow J/\psi J/\psi$

Results

$$\mathcal{A}[\eta_{b} \rightarrow J/\psi J/\psi] = i \frac{g_{\eta_{b}JJ}}{m_{\eta_{b}}} \varepsilon_{\alpha\beta\gamma\delta} p_{3}^{\alpha} p_{4}^{\beta} \epsilon_{3}^{*\gamma} \epsilon_{4}^{*\delta} \left[1 - i \frac{g_{\eta_{b}DD^{*}}}{g_{\eta_{b}JJ}} A_{LD} \right]$$
$$\left(\frac{g_{\eta_{b}DD^{*}}}{g_{\eta_{b}JJ}} \right)^{2} \propto \frac{\mathcal{B}r[\eta_{b} \rightarrow D\overline{D^{*}}]}{\mathcal{B}r[\eta_{b} \rightarrow J/\psi J/\psi]_{SD}} \in [10^{2}, 10^{5}]$$
$$\bigcup$$
$$1 \leq \frac{g_{\eta_{b}DD^{*}}}{g_{\eta_{b}JJ}} \leq 35$$
$$\bigcup$$
$$0.31 \pm 0.06 \leq \frac{g_{\eta_{b}DD^{*}}}{g_{\eta_{b}JJ}} A_{LD} \leq 10 \pm 2$$
with $2.0 \leq \alpha \leq 2.4$

Pietro Santorelli (Napoli, Italy)

 $\eta_{\rm b} \rightarrow J/\psi J/\psi$

Results

	$\mathcal{B}r[\eta_b \to J/\psi J/\psi]_{SD}$	$\mathcal{B}r[\eta_b o J/\psi J/\psi]_{full}$	# Events	# at Tevatron	# at LHC
BFL	$7 \times 10^{-4 \pm 1}$		677 ÷ 67700	4 ÷ 400	
J	$(0.5 \div 6.6) \times 10^{-8}$		$0.05 \div 0.6$	0.0003 ÷ 0.004	$0.5 \div 6$
this work	$(0.5 \div 6.6) \times 10^{-8}$	$(0.28 \div 6.7) imes 10^{-6}$	$3 \div 65$	0.02 ÷ 0.4	26 ÷ 640

we used

TEVATRON(RunII) $\sigma(\eta_b) = 2.5 \ \mu b \ \mathcal{L} = 1.1 \ fb^{-1}$ rapidity interval $= \pm 0.6$ LHC $\sigma(\eta_b) = 15 \ \mu b \ \mathcal{L} = 300 \ fb^{-1}$ rapidity interval $= \pm 0.6$

and a 10% of the product of acceptance and efficiency for detecting each $J/\psi \to \mu^+\mu^-$

Pietro Santorelli (Napoli, Italy)

 $\eta_b \rightarrow J/\psi J/\psi$

Summary and Conclusions

- We have studied the role of the $D \overline{D^*} \rightarrow J/\psi J/\psi$ rescattering in the $\eta_b \rightarrow J/\psi J/\psi$.
- We have shown that this contribution may enhance the branching fraction of about two orders of magnitude which would imply a measurable effect in LHC.
- To give a firm prediction of the Br[η_b → J/ψ J/ψ] a direct calculation of the Br[η_b → D D^{*}] is in order.
- However, experimental results together with this calculation can be used to put phenomenological constraints on the hadronic quantities: $g_{\eta_b DD^*}$ and $g_{JD^{(*)}D^{(*)}}$.

Summary and Conclusions

- We have studied the role of the $D \overline{D^*} \rightarrow J/\psi J/\psi$ rescattering in the $\eta_b \rightarrow J/\psi J/\psi$.
- We have shown that this contribution may enhance the branching fraction of about two orders of magnitude which would imply a measurable effect in LHC.
- To give a firm prediction of the Br[η_b → J/ψ J/ψ] a direct calculation of the Br[η_b → D D^{*}] is in order.
- However, experimental results together with this calculation can be used to put phenomenological constraints on the hadronic quantities: $g_{\eta_b DD^*}$ and $g_{JD^{(*)}D^{(*)}}$.

α

 $\eta_{\rm b} \rightarrow {\rm J}/\psi {\rm J}/\psi$

・ロト ・ 四ト ・ ヨト ・ ヨト