Bottomonium at finite temperature from Lattice QCD

Sinéad Ryan

Trinity College Dublin & Jefferson Laboratory and Jonivar Skullerud, Bugra Oktay, Seyong Kim, Maria-Paola Lombardo and Don Sinclair

Quarkonium Working Group, Hamburg, October 2007

Outline

• Background

- ► Follows from Charmonium at finite temperature on dynamical (N_f = 2) lattices. [arXiv:0705.2198]
- NRQCD and relativistic bottomonium on dynamical lattices
- Zero temperature spectroscopy
 - \star the value of extended operators for $b\bar{b}$ excitations
- Results
 - preliminary results from NRQCD and relativistic simulations
- Some conclusions and outlook

Why bottomonium?

- Many b quarks will be produced at ALICE
- Melting of S and P waves?
- $T_d^{\Upsilon} \sim 5T_c$, difficult to do on a lattice
- Use two approaches and compare results: NRQCD and relativistic.

Dynamical anisotropic lattices

- A large number of points in the time direction required
- To reach $T = 2T_c$, $\mathcal{O}(10)$ points $\Rightarrow a_t \sim 0.025$ fm.
- Far too expensive with an isotropic $(a_s = a_t)$ lattice \Rightarrow anisotropic, $a_t \ll a_s$.
- Gives an independent handle on temperature

Dynamical anisotropic lattices

- A large number of points in the time direction required
- To reach $T = 2T_c$, $\mathcal{O}(10)$ points $\Rightarrow a_t \sim 0.025$ fm.
- Far too expensive with an isotropic $(a_s = a_t)$ lattice \Rightarrow anisotropic, $a_t \ll a_s$.
- Gives an independent handle on temperature

- Introduces 2 additional parameters to the action
- Non-trivial but now understood tuning problem [PRD 74 014505 (2006)]

Simulation parameters

arXiv:07075.2198

$m_\pi/m_ ho$	0.54	
ξ	6	
a _t	0.025fm	
as	0.17fm	
N_s^3	8 ³	$ ightarrow 12^3$
T_c	1/33.5 <i>a</i> t	210MeV
Nt	16	$T \sim 2.1 T_c$
	24	$T\sim 1.4 T_c$
	32	$T\sim 1.05 T_c$
	80	$T \sim 0$
	$\begin{array}{l} m_{\pi}/m_{\rho} \\ \xi \\ a_t \\ a_s \\ N_s^3 \\ T_c \\ N_t \end{array}$	$\begin{array}{rcrc} m_{\pi}/m_{\rho} & 0.54 \\ \xi & 6 \\ a_t & 0.025 \mathrm{fm} \\ a_s & 0.17 \mathrm{fm} \\ N_s^3 & 8^3 \\ T_c & 1/33.5 a_t \\ N_t & 16 \\ & 24 \\ & 32 \\ & 80 \end{array}$

Use all-to-all propagators and extended operators for better overlap with states.

b-quark methods on the lattice

Need $am_b < 1$ which becomes increasingly difficult for heavy quarks

- Fermilab: mass-dependent renormalisation of the action and operators. Expensive to improve beyond O(a).
- NRQCD: Good for *b* quarks, not *c* and no continuum limit. Use an action good to lowest order in v^2 .
- Anisotropic relativistic: keeps $a_t m_b < 1$. Continuum limit possible. Use an action improved to $\mathcal{O}(a_s^3, a_t^2, \alpha_s a_s^2)$.

Compare NRQCD and Relativistic anisotropic results on the same dynamical ($N_f = 2$) background configurations.

(Relativistic) zero-temperature spectroscopy: S waves

(Relativistic) zero-temperature spectroscopy: S waves

(Relativistic) zero-temperature spectroscopy: P waves $\rightarrow P - S$ splitting \approx 400MeV. Persists above T_c

Sinéad Ryan (TCD & JLab)

Bottomonium from LQCD

NRQCD: S and P waves at T = 0, $T > T_c$

12^3x80

NRQCD: S and P waves at T = 0, $T > T_c$ 12^3x32

Spectral functions from Maximum Entropy Method

- Spectral functions give information about hadrons in the medium
- Can be used to determine transport coefficients
- $\rho_{\Gamma}(\omega, \vec{p})$ related to the euclidean correlator $G_{\Gamma}(t, \vec{p})$ by

$$G_{\Gamma}(t, \vec{p}) = \int \rho_{\Gamma}(\omega, \vec{p}) rac{\cosh[\omega(t-1/2T)]}{\sinh(\omega/2T)}$$

- ill-posed problem needs a large number of timeslices
- use mem to determine the most likely $\rho(\omega)$.

Preliminary results: no mem systematics included.

η_b (¹S₀) T dependence **PRELIMINARY**

p()

h_b (¹ P_1) T dependence **PRELIMINARY**

ρ(ω)

Outlook

- Early stages of this work
 - zero temperature spectroscopy and MEM in reasonable agreement
 - ► little dependence in the MEM of S or P waves on temperature. Up to $T \sim 2T_c$.
 - ▶ good signals in NRQCD correlators and observed P-S splitting.
- Discretisation errors
 - finer lattice spacings being generated
- More reliable determination of states
 - Use both extended and point operators (with all-to-all propagators)
 - Better analysis of excitations including particle identification
- Reconstructed correlators
- MEM systematics
 - vary the default model, time ranges etc.
- More in-depth comparison of NRQCD and relativistic results from the same lattices