Semileptonic bc to cc Baryon Decay and Heavy Quark Spin Symmetry

J. Flynn, E. Hernández, J.M. Verde-Velasco and JN

Motivation: Separate heavy quark spin symmetries make it possible to describe the semileptonic decays

\[\Sigma_{bc}^{(*)} \rightarrow \Sigma_{cc}^{(*)} l \bar{\nu}_l, \quad \Omega_{bc}^{(*)} \rightarrow \Omega_{cc}^{(*)} l \bar{\nu}_l \]

in the limit $m_{b,c} \gg \Lambda_{QCD}$ and close to the zero recoil point.
\[
q^2 = m_{bc}^2 + m_{cc}^2 - 2m_{bc}m_{cc}\omega, \quad \frac{1}{2\pi} \leq \omega \leq \frac{m_{bc}^2 + m_{cc}^2 - m_l^2}{2m_{bc}m_{cc}}
\]

\[
HQS \text{ constraints on SL FF’s and } \Gamma \text{’s of doubly heavy baryons.}
\]

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>J^P</th>
<th>I</th>
<th>S^π_{hh}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ_{cc}</td>
<td>0</td>
<td>$\frac{1}{2}^+$</td>
<td>$\frac{1}{2}$</td>
<td>1+ ccl</td>
</tr>
<tr>
<td>Ξ_{cc}^*</td>
<td>0</td>
<td>$\frac{3}{2}^+$</td>
<td>$\frac{1}{2}$</td>
<td>1+ ccl</td>
</tr>
<tr>
<td>Ω_{cc}</td>
<td>−1</td>
<td>$\frac{1}{2}^+$</td>
<td>0</td>
<td>1+ ccs</td>
</tr>
<tr>
<td>Ω_{cc}^*</td>
<td>−1</td>
<td>$\frac{3}{2}^+$</td>
<td>0</td>
<td>1+ ccs</td>
</tr>
<tr>
<td>Ξ_{bb}</td>
<td>0</td>
<td>$\frac{1}{2}^+$</td>
<td>$\frac{1}{2}$</td>
<td>1+ bbl</td>
</tr>
<tr>
<td>Ξ_{bb}^*</td>
<td>0</td>
<td>$\frac{3}{2}^+$</td>
<td>$\frac{1}{2}$</td>
<td>1+ bbl</td>
</tr>
<tr>
<td>Ω_{bb}</td>
<td>−1</td>
<td>$\frac{1}{2}^+$</td>
<td>0</td>
<td>1+ bbs</td>
</tr>
<tr>
<td>Ω_{bb}^*</td>
<td>−1</td>
<td>$\frac{3}{2}^+$</td>
<td>0</td>
<td>1+ bbs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>J^P</th>
<th>I</th>
<th>$S^\pi_{hh'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ξ'_{bc}</td>
<td>0</td>
<td>$\frac{1}{2}^+$</td>
<td>$\frac{1}{2}$</td>
<td>0+ bcl</td>
</tr>
<tr>
<td>Ξ_{bc}</td>
<td>0</td>
<td>$\frac{1}{2}^+$</td>
<td>$\frac{1}{2}$</td>
<td>1+ bcl</td>
</tr>
<tr>
<td>Ξ_{bc}^*</td>
<td>0</td>
<td>$\frac{3}{2}^+$</td>
<td>$\frac{1}{2}$</td>
<td>1+ bcl</td>
</tr>
<tr>
<td>Ω'_{bc}</td>
<td>−1</td>
<td>$\frac{1}{2}^+$</td>
<td>0</td>
<td>0+ bcs</td>
</tr>
<tr>
<td>Ω_{bc}</td>
<td>−1</td>
<td>$\frac{1}{2}^+$</td>
<td>0</td>
<td>1+ bcs</td>
</tr>
<tr>
<td>Ω_{bc}^*</td>
<td>−1</td>
<td>$\frac{3}{2}^+$</td>
<td>0</td>
<td>1+ bcs</td>
</tr>
</tbody>
</table>
For instance, let us study \(\Xi^{(*)}_{bc} \to \Xi^{(*)}_{cc} \) SL decays,

\[
p_\mu = m_{\Xi^{(*)}_{bc}} v_\mu, \quad p'_\mu = m_{\Xi^{(*)}_{cc}} v'_\mu = m_{\Xi^{(*)}_{cc}} v_\mu + k_\mu
\]

Near the zero-recoil point \(\omega = 1 \) (\(\omega = v \cdot v' \)) \(k \) small residual momentum \(\Rightarrow k \cdot v = O(1/m_{\Xi^{(*)}_{cc}}) \).

To represent the lowest-lying \(S \)-wave \(bcq \) baryons we use wavefunctions comprising tensor products of Dirac matrices and spinors, namely:

\[
B'_{bc} = -\left[\frac{(1 + \gamma^5)}{2} \right]_{\alpha\beta} \gamma_5 u_\gamma(v, r)
\]

\[
B_{bc} = \left[\frac{(1 + \gamma^5)}{2} \gamma_\mu \right]_{\alpha\beta} \left[\frac{1}{\sqrt{3}} (v^\mu + \gamma^\mu) \gamma_5 u(v, r) \right]_\gamma
\]

\[
B^*_{bc} = \Xi^*_{bc} = \left[\frac{(1 + \gamma^5)}{2} \gamma_\mu \right]_{\alpha\beta} u^\mu_\gamma(v, r)
\]

\(\alpha, \beta, \gamma \) Dirac indices and \(r \) baryon helicity label. These wavefunctions can be considered as matrix elements of the form \(\langle 0 | c_\alpha \bar{q}^c \beta b_\gamma | B_{bc}^{(i*)} \rangle \) where \(\bar{q}^c = q^T C \) with \(C \) the charge-conjugation matrix.
Under a Lorentz (Λ), and b and c quark spin (S_b and S_c) transformations, a wavefunction $\Gamma_{\alpha\beta} u_\gamma$ transforms as:

$$\Gamma u \rightarrow S(\Lambda)\Gamma S^{-1}(\Lambda) S(\Lambda) u$$

$$\Gamma u \rightarrow S_c \Gamma S_b u$$

States normalised using $\bar{u}u \text{Tr}(\Gamma \Gamma)$: mutually orthogonal and have a common normalisation ($\bar{\Gamma} = \gamma^0 \Gamma^\dagger \gamma^0$). States where the b and c quarks are coupled to definite spin,

$$|S_{bc} = 0; J = \frac{1}{2}\rangle = -\frac{1}{2} |S_{cq} = 0; J = \frac{1}{2}\rangle + \frac{\sqrt{3}}{2} |S_{cq} = 1; J = \frac{1}{2}\rangle$$

$$|S_{bc} = 1; J = \frac{1}{2}\rangle = \frac{\sqrt{3}}{2} |S_{cq} = 0; J = \frac{1}{2}\rangle + \frac{1}{2} |S_{cq} = 1; J = \frac{1}{2}\rangle$$

$$|S_{bc} = 1; J = \frac{3}{2}\rangle = |S_{cq} = 1; J = \frac{3}{2}\rangle$$
Remarks:

- **We have not used definite spin combinations directly for the b and c quarks.** The reason is to make both the spin transformations on the heavy quarks and the Lorentz transformation of the states convenient, making it straightforward to build spin-invariant and Lorentz covariant quantities.

- **We could have combined the b quark with the light quark to a definite spin.** This would clearly interchange the spin transformations and alter the appearance of spin-invariant and Lorentz covariant quantities. Physical results should of course be unchanged.
For the cc baryons,

$$B'_{cc} = -\sqrt{\frac{2}{3}} \left[\frac{1 + \psi'}{2} \gamma_5 \right]_{\alpha\beta} u_\gamma(v, r)$$

$$B_{cc} = \sqrt{2} \left[\frac{1 + \psi}{2} \gamma_\mu \right]_{\alpha\beta} \left[\frac{1}{\sqrt{3}} (v^\mu + \gamma^\mu) \gamma_5 u(v, r) \right]_\gamma$$

$$B^*_c = \Xi^*_c = \sqrt{\frac{1}{2}} \left[\frac{1 + \psi}{2} \gamma_\mu \right]_{\alpha\beta} u_\mu(v, r)$$

- the two charm quarks can only be in a symmetric spin-1 state: B'_{cc} and B_{cc} correspond to the same baryon state Ξ_{cc}.

- normalisation: there are two ways to contract the charm quark indices, leading to $\bar{u}u \text{Tr} (\Gamma \Gamma) + \bar{u} \Gamma \Gamma u$. To have the same normalisation as for the bc case, we have to include extra numerical factors.
... construct spin-invariant and Lorentz covariant amplitudes for the weak transition matrix elements,
SL $\Xi_{bc}^{(*)} \rightarrow \Xi_{cc}^{(*)}$ decays \leftrightarrow ME weak current $J_\mu = \bar{c}\gamma_\mu(1-\gamma_5)b$

We first build transition amplitudes between the $B_{bc}^{(*)}$ and $\Xi_{cc}^{(*)}$ states and subsequently take linear combinations to obtain transitions from $\Xi_{bc}^{(*)}$ states. The most general form for the ME respecting the HQSS is ($j_\mu = \gamma_\mu(1-\gamma_5)$):

$$
\langle \Xi_{cc}^{(*)}, v, k, M' | J_\mu(0) | B_{bc}^{(*)}, v, M \rangle = \bar{u}_{cc}(v, k, M')j_\mu u_{bc}(v, M) \text{Tr}[\Gamma_{bc}\Omega\Gamma_{cc}]
+ \bar{u}_{cc}(v, k, M')\Gamma_{bc}\Omega\Gamma_{cc}j_\mu u_{bc}(v, M)
$$

$$
\begin{align*}
\Gamma_{bc} & \rightarrow S_c\Gamma_{bc}, & u_{bc} & \rightarrow S_b u_{bc} \\
\Gamma_{cc} & \rightarrow \Gamma_{cc}S_c^\dagger, & \bar{u}_{cc} & \rightarrow \bar{u}_{cc}S_c^\dagger \\
\bar{c}j_\mu b : j_\mu & \rightarrow S_c j_\mu S_b^\dagger
\end{align*}
$$

J. Nieves, U. Granada
... construct spin-invariant and Lorentz covariant amplitudes for the weak transition matrix elements,

\[\text{SL } \Xi_{bc}^{(*)} \rightarrow \Xi_{cc}^{(*)} \text{ decays } \leftrightarrow \text{ME weak current } J^\mu = \bar{c}\gamma^\mu(1-\gamma_5)b \]

We first build transition amplitudes between the \(B_{bc}^{(*)} \) and \(\Xi_{cc}^{(*)} \) states and subsequently take linear combinations to obtain transitions from \(\Xi_{bc}^{(*)} \) states. The most general form for the ME respecting the HQSS is \((j^\mu = \gamma^\mu (1-\gamma_5)) \):

\[
\langle \Xi_{cc}^{(*)}, v, k, M' | J^\mu (0) | B_{bc}^{(*)}, v, M \rangle = \bar{u}_{cc}(v, k, M') S_c^\dagger S_c j^\mu S_b^\dagger S_b u_{bc}(v, M) \text{Tr}[S_c \Gamma_{bc} \Omega \bar{\Gamma}_{cc} S_c^\dagger] + \bar{u}_{cc}(v, k, M') S_c^\dagger S_c \Gamma_{bc} \Omega \bar{\Gamma}_{cc} S_c^\dagger S_c j^\mu S_b^\dagger S_b u_{bc}(v, M)
\]

\[
\begin{align*}
\Gamma_{bc} & \rightarrow S_c \Gamma_{bc}, & u_{bc} & \rightarrow S_b u_{bc} \\
\bar{\Gamma}_{cc} & \rightarrow \bar{\Gamma}_{cc} S_c^\dagger, & \bar{u}_{cc} & \rightarrow \bar{u}_{cc} S_c^\dagger \\
\bar{c}j^\mu b : j^\mu & \rightarrow S_c j^\mu S_b^\dagger
\end{align*}
\]
where M and M' are the helicities of the initial and final states

$$\Omega = -\frac{1}{\sqrt{2}} \eta(v \cdot v')$$

is the most general Dirac matrix that can be written in terms of the vectors k and v.

- terms with a factor of ψ can be omitted because of the equations of motion ($\psi u = u$, $\psi \Gamma = \Gamma$, $\gamma_\mu u^\mu = 0$, $v_\mu u^\mu = 0$),

- terms with k will always lead to contributions proportional to $v \cdot k = \mathcal{O}(1/m_{\Xi_{cc}^*})$.
\[
\begin{align*}
\Xi_{bc} \rightarrow \Xi_{cc} & \quad \eta \bar{u}_{cc} \left(2\gamma^{\mu} - \frac{4}{3}\gamma^{\mu}\gamma_{5}\right)u_{bc} \\
\Xi'_{bc} \rightarrow \Xi_{cc} & \quad -\frac{2}{\sqrt{3}}\eta \bar{u}_{cc} (-\gamma^{\mu}\gamma_{5})u_{bc} \\
\Xi_{bc} \rightarrow \Xi^*_{cc} & \quad -\frac{2}{\sqrt{3}}\eta \bar{u}_{cc}^{\mu}u_{bc} \\
\Xi'_{bc} \rightarrow \Xi^*_{cc} & \quad -2\eta \bar{u}_{cc}^{\mu}u_{bc} \\
\Xi^*_{bc} \rightarrow \Xi_{cc} & \quad -\frac{2}{\sqrt{3}}\eta \bar{u}_{cc}^{\mu}u_{bc} \\
\Xi^*_{bc} \rightarrow \Xi^*_{cc} & \quad -2\eta \bar{u}_{cc}^{\lambda} (\gamma^{\mu} - \gamma^{\mu}\gamma_{5})u_{bc}^{\lambda}
\end{align*}
\]
Remarks:

- If the b and c quarks become degenerate, then vector current conservation ensures that $\eta(1) = 1$.

- Savage and White (PLB 271 (1991) 410) found similar results: approach where the two heavy quarks bind into a colour antitriplet which appears as a pointlike colour source to the light degrees of freedom + “superflavor” formalism of Georgi and Wise. We find two differences to their results (one of these was already pointed out by Sanchis-Lozano PLB 321 (1994) 407).

- Our approach, where we consider the spin transformations of each heavy quark explicitly, is straightforward and similar to that used to describe B_c meson decays: Jenk-

- **Spin symmetry** for both the b and c quarks **enormously simplifies** the description of all $\Xi_{bc}^{(*)} \rightarrow \Xi_{cc}^{(*)} \nu \bar{\nu}$ decays in the heavy quark limit and near the zero recoil point. **All the weak transition matrix elements are given in terms of a single universal function.** Lorentz covariance alone allows a large number of form factors (six form factors to describe $\Xi_{bc} \rightarrow \Xi_{cc}$, another six for $\Xi'_{bc} \rightarrow \Xi_{cc}$, eight each for $\Xi_{bc} \rightarrow \Xi^*_{cc}, \Xi'_{bc} \rightarrow \Xi^*_{cc}$ and $\Xi^*_{bc} \rightarrow \Xi_{cc}$, and even more for $\Xi^*_{bc} \rightarrow \Xi^*_{cc}$).
Test: QM [EPJA 32 (2007) 183]

\[
\eta(v \cdot v') = \int d^3r_1 d^3r_2 \exp[-i\vec{k} \cdot \vec{r}_{12}/2][\Psi_{cc}^\Xi(r_1, r_2, r_{12})]^* \Psi_{bc}^\Xi(r_1, r_2, r_{12})
\]

\[
\begin{align*}
\text{Re}lative \text{ Motion of } q \text{ and a Pointlike } Q_c \text{ Diquark} \\
r_{12} \ll r_1, r_2 \rightarrow \Psi_{Qc}^\Xi(r_1, r_2, r_{12}) \approx \Phi_{Qc}(r_{12}) \phi(r_{Qc}) \varphi_{Qc}(\vec{r}_{12} \cdot \vec{r}_{Qc}) \\
\end{align*}
\]

⇐ Jacobi's coordinates, \(Q, Q' = c, b\).
\[
\begin{align*}
&\left\langle \Xi_{cc}, r' \bar{p}' \left| \bar{c} \gamma^\mu (1 - \gamma_5) b(0) \right| \Xi_{bc}'^{(i)}, r \bar{p} \right\rangle = \bar{u}_{r' c \bar{c}}(\bar{p}') \left\{ \gamma^\mu \left(F_1(w) - \gamma_5 G_1(w) \right) \\
&\quad + u^\mu \left(F_2(w) - \gamma_5 G_2(w) \right) + v'^\mu \left(F_3(w) - \gamma_5 G_3(w) \right) \right\} u_{r \bar{b} c}(\bar{p})
\end{align*}
\]
... $1/2 \rightarrow 3/2$ spin transitions

$$
\langle \Xi_{cc}, r' \bar{p}' | \bar{c} \gamma^\mu (1 - \gamma_5) b(0) | \Xi^{(i)}_{bc}, r \bar{p} \rangle = \bar{u}_{\lambda r'}(\bar{p}') \Gamma^\lambda \mu u_{\lambda, r}(\bar{p})
$$

$$
\Gamma^\lambda \mu = \left(\frac{C^V_3(\omega)}{m_{\Xi^{(i)}_{bc}}} (g^{\lambda \mu} \bar{q} - q^\lambda \gamma^\mu) + \frac{C^V_4(\omega)}{m_{\Xi^{(i)}_{bc}}^2} (g^{\lambda \mu} q p' - q^\lambda p'^\mu)
\right.
$$

$$
+ \frac{C^V_5(\omega)}{m_{\Xi^{(i)}_{bc}}^2} (g^{\lambda \mu} q p - q^\lambda p^\mu) + C^V_6(\omega) g^{\lambda \mu}) \gamma_5
$$

$$
+ \left(\frac{C^A_3(\omega)}{m_{\Xi^{(i)}_{bc}}} (g^{\lambda \mu} \bar{q} - q^\lambda \gamma^\mu) + \frac{C^A_4(\omega)}{m_{\Xi^{(i)}_{bc}}^2} (g^{\lambda \mu} q p' - q^\lambda p'^\mu) + C^A_5(\omega) g^{\lambda \mu} + \frac{C^A_6(\omega)}{m_{\Xi^{(i)}_{bc}}^2} q^\lambda q^\mu \right)
$$

and $3/2 \rightarrow 1/2$ transitions...

$$
\langle \Xi_{cc}, r' \bar{p}' | \bar{c} \gamma^\mu (1 - \gamma_5) b(0) | \Xi^{*}_{bc}, r \bar{p} \rangle = \bar{u}_{\lambda r'}(\bar{p}') \hat{\Gamma}^\lambda \mu u_{\lambda, r}(\bar{p})
$$
\[(F_1 + F_2 + F_3)/2 \]

\[3/4 G_1 \]

\[F_1 + F_2 + F_3 \]

\[-\sqrt{3} G_1/2 \]

\[\Xi_{bc} \rightarrow \Xi_{cc} \]

\[\Xi'_{bc} \rightarrow \Xi_{cc} \]

\[\Xi_{bb} \rightarrow \Xi_{bc} \]

\[\Xi'_{bb} \rightarrow \Xi'_{bc} \]

\[\Xi^*_{bc} \rightarrow \Xi_{cc} \]

\[\Xi^*_{bb} \rightarrow \Xi^*_{bc} \]

\[\Xi^*_{bb} \rightarrow \Xi'_{bc} \]
and \(\frac{3}{2} \to \frac{3}{2} \) transitions, \(\Xi_{bc}^{*} \to \Xi_{cc}^{*} \sim 50 \) FF’s

\[
(F_1 + F_2 + F_3)/2 \\
3/4 G_1 \\
F_1 + F_2 + F_3 \\
-\sqrt{3} G_1/2 \\
\Xi_{bc} \to \Xi_{cc}^{*} \\
\Xi_{bc}^{*} \to \Xi_{cc}^{*} \\\n\Xi_{bc}^{*} \to \Xi_{cc}^{*} \\
\Xi_{bb} \to \Xi_{bc} \\
\Xi_{bb} \to \Xi_{bc}^{*} \\\n\Xi_{bb}^{*} \to \Xi_{bc}^{*} \\
vect \rightarrow r'=3/2 \\
vector, r=1/2 \rightarrow r'=1/2 \\
axial, r=1/2 \rightarrow r'=-1/2 \\
axial, r=1/2 \rightarrow r'=3/2
\]
HQSS constraints on semileptonic decay widths

\[\Gamma = \frac{G_F^2 |V_{cb}|^2}{32\pi^4} \frac{m_{\Xi_{cc}}}{m_{\Xi_{bc}^{(*)}}} \int_{1}^{\omega_{\text{max}}} d\omega \frac{\sqrt{\omega^2 - 1}}{\mathcal{L}^{\mu\nu} \mathcal{H}_{\mu\nu}} \]

\[\mathcal{L}^{\mu\nu} = \int \frac{d^3k_1}{2E_1} \frac{d^3k_2}{2E_2} \delta^{(4)}(q - k_1 - k_2) \left(k_1^\mu k_2^\nu + k_1^\nu k_2^\mu - g^{\mu\nu} k_1 \cdot k_2 + i \epsilon^{\mu\nu\alpha\beta} k_1^\alpha k_2^\beta \right) \]

\[= A(q^2) g^{\mu\nu} + B(q^2) \frac{q^\mu q^\nu}{q^2} \]

For the actual doubly heavy baryon masses \(\omega_{\text{max}} \approx 1.22 (1.08) \) for \(bc \rightarrow cc (bb \rightarrow bc) \) transitions. The different differential decay widths \(d\Gamma/d\omega \) show a maximum at around \(\omega \approx 1.05 (1.01) \implies \)

\[\eta(\omega) \rightarrow \mathcal{H}_{\mu\nu} \]

and approximating

\[m_{\Xi_{bb}} \approx m_{\Xi_{bb}^*}; \quad m_{\Xi_{bc}} \approx m_{\Xi_{bc}'^*} \approx m_{\Xi_{bc}^*}; \quad m_{\Xi_{cc}} \approx m_{\Xi_{cc}^*} \]
predict that some ratios between different decay widths should be approximately 1...

<table>
<thead>
<tr>
<th>bc → cc</th>
<th>Hernández et al.</th>
<th>Ebert et al.</th>
<th>Guo et al.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Ξ</th>
<th>Ω</th>
<th>Ξ</th>
<th>Ω</th>
<th>Ξ</th>
<th>Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\Gamma(B_{bc}^{\prime}\rightarrow B_{cc}^{}l\bar{\nu}l)}{3\Gamma(B{bc}\rightarrow B_{cc}^{}l\bar{\nu}_l)}$</td>
<td>1.04$^{+0.03}_{-0.01}$</td>
<td>1.04$^{-0.03}_{-0.01}$</td>
<td>0.79</td>
<td>0.82</td>
<td>0.68</td>
<td>—</td>
</tr>
<tr>
<td>$\frac{\Gamma(B_{bc}\rightarrow B_{cc}^{}l\bar{\nu}l)}{3\Gamma(B{bc}^{\prime}\rightarrow B_{cc}^{}l\bar{\nu}_l)}$</td>
<td>0.82$^{+0.06}_{-0.01}$</td>
<td>0.84$^{+0.13}_{-0.01}$</td>
<td>1.22</td>
<td>1.17</td>
<td>2.72</td>
<td>—</td>
</tr>
<tr>
<td>$\frac{\Gamma(B_{bc}^{}\rightarrow B_{cc}l\bar{\nu}l)}{\frac{1}{2}\Gamma(B{bc}\rightarrow B_{cc}^{}l\bar{\nu}_l)}$</td>
<td>1.14$^{+0.08}_{-0.06}$</td>
<td>1.16$^{+0.04}_{-0.01}$</td>
<td>1.05</td>
<td>1.08</td>
<td>3.90</td>
<td>—</td>
</tr>
<tr>
<td>$\frac{\Gamma(B_{bc}^{}\rightarrow B_{cc}^{}l\bar{\nu}l)}{\Gamma(B{bc}\rightarrow B_{cc}l\bar{\nu}l)+\frac{1}{2}\Gamma(B{bc}\rightarrow B_{cc}^{*}l\bar{\nu}_l)}$</td>
<td>0.89$^{+0.11}_{-0.06}$</td>
<td>0.94$^{+0.13}_{-0.01}$</td>
<td>1.01</td>
<td>1.01</td>
<td>1.08</td>
<td>—</td>
</tr>
</tbody>
</table>
$bb \to bc$

<table>
<thead>
<tr>
<th></th>
<th>Hernández et al.</th>
<th>Ebert et al.</th>
<th>Guo et al.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Gamma(B^{bb} \to B{bc}^ l\bar{\nu}_l)$</td>
<td>Ξ</td>
<td>Ω</td>
<td>Ξ</td>
</tr>
<tr>
<td>$3 \Gamma(B^*{bb} \to B{bc} l\bar{\nu}_l)$</td>
<td>$1.00^{+0.01}_{-0.04}$</td>
<td>$1.00^{+0.03}_{-0.01}$</td>
<td>0.99</td>
</tr>
<tr>
<td>$\frac{2}{3} \Gamma(B_{bb} \to B_{bc}^* l\bar{\nu}_l)$</td>
<td>$0.86^{+0.08}_{-0.06}$</td>
<td>$0.86^{+0.05}_{-0.0}$</td>
<td>0.96</td>
</tr>
<tr>
<td>$\frac{1}{2} \Gamma(B_{bb} \to B_{bc}^* l\bar{\nu}_l)$</td>
<td>$1.14^{+0.04}_{-0.05}$</td>
<td>$1.13^{+0.01}_{-0.17}$</td>
<td>1.05</td>
</tr>
<tr>
<td>$\Gamma(B^{bb} \to B{bc}^ l\bar{\nu}_l)$</td>
<td>$0.94^{+0.07}_{-0.06}$</td>
<td>$0.93^{+0.11}_{-0.10}$</td>
<td>1.01</td>
</tr>
<tr>
<td>$\Gamma(B_{bb} \to B_{bc} l\bar{\nu}l) + \frac{1}{2} \Gamma(B{bb} \to B_{bc}^* l\bar{\nu}_l)$</td>
<td>1.05</td>
<td>1.04</td>
<td>0.31</td>
</tr>
</tbody>
</table>

J. Nieves, U. Granada
Diquark Picture and Link to B_c Meson Decays

\[\eta(\mathbf{v} \cdot \mathbf{v'}) = \int d^3r_1 d^3r_2 \exp[-i\mathbf{k} \cdot \mathbf{r}_{12}/2] [\Psi_{cc}^{\Xi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{12})]^* \Psi_{bc}^{\Xi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{12}) \]

\[\xi_{bb}, \xi_{bc}, \xi_{cc} \text{ fm} \]

\[P_{h_{1/2}} [\text{fm}^{-1}] \]

\[\Omega_{bb}, \Omega_{bc}, \Omega_{cc} \text{ fm} \]

\[r_{12} \ll r_1, r_2 \rightarrow \Psi_{Qc}^{\Xi}(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_{12}) \approx \Phi_{Qc}(\mathbf{r}_{12}) \phi(r_{Qc}) \varphi_{Qc}(\mathbf{r}_{12} \cdot \mathbf{r}_{Qc}) \]

\[\text{DIQUARK} \quad \text{VARIATIONAL}\approx1 \]

\[\text{RELATIVE MOTION OF } q \text{ AND A POINTLIKE } Qc \text{ DIQUARK} \]
\[\eta(v \cdot v') = \int d^3 r_{12} \exp[-i\vec{k} \cdot \vec{r}_{12}/2][\Phi_{cc}(r_{12})]^*\Phi_{bc}(r_{12}) \int d^3 r \phi^*(r)\phi(r) \]

where \(\vec{r} = \vec{r}_{ccq} \) and in the \(d^3 r \) integral we have replaced \(\phi(r_{bcq}) \) by \(\phi(r) \) since \(\vec{r}_{bcq} = \vec{r}_{ccq} + O(\vec{r}_{12}) \). This approximation leads to uncertainties of \(O(r_{12}^2) \) after integration,

\[\eta(v \cdot v') = \int d^3 r_{12} \exp[-i\vec{k} \cdot r_{12}/2][\Phi_{cc}(r_{12})]^*\Phi_{bc}(r_{12}) \]

which has an identical form to the expression of the form factor \(\Delta \), unique form factor which describes the \(B_c \) to \(\eta_c \) and \(J/\psi \) semileptonic decays, in terms of wavefunctions of the \(\bar{b}c \) and \(\bar{c}c \) bound states (Jenkins et al., NPB 390 (1993) 463).
This does not mean that η and Δ are identical because the QQ and $Q\bar{Q}$ potentials used to compute the diquark and meson wavefunctions are not the same. For example a $\lambda_i\lambda_j$ colour dependence (λ_i are the usual Gell-Mann matrices) would lead to $V^{QQ} = V^{Q\bar{Q}}/2$. [approx wfnt overlaps (solid lines) vs IW funcs (dahsed lines)]
The ω^2 slope of the Δ form factor is indeed smaller than that of η, but the ratio is around 1 to 3 rather than 1 to 6, so there are significant corrections to the Coulomb wavefunction description.

Conclusions

- Separate HQSS make it possible to describe all $SL_{bc} \rightarrow SL_{cc} l \bar{\nu}_l$, $\Omega_{bc}^{(*)} \rightarrow \Omega_{cc}^{(*)} l \bar{\nu}_l$

 decays using a single form factor. Similarly for $bb \rightarrow bc$ decays.

- We have discussed the resemblance of the bc baryon decays to those of B_c mesons to η_c and J/ψ mesons.
• **Lattice QCD** simulations work best near the zero-recoil point and thus are well-suited to **check the validity of the results**.

• **QM calculations consistent with HQSS?**

 – Results by **Hernández et al.** (FF’s and decay width ratios), and **Ebert et al.** (decay width ratios), **compare well**, within expectations **with HQSS**

 – **We detect problems** either in the model or in the calculation performed by Guo et al.