

Production of charmonium-like mesons (X,Y,Z) in B_c decays

Cai–Dian Lu IHEP, Beijing In collaboration with W. Wang, YM. Wang

Outline

- Theoretical framework (Proof of factorization of B_c decays)
- Form factors of $B_c \rightarrow X, Y, Z$
- Numerical results
- Summary

Experimental status

state	mass (MeV)	width (MeV)	production/decay mode	Exp
X(3872)	$3872.0 \pm 0.6 \pm 0.5$	< 2.3 95% C.L.	$B \to KX \to K\pi\pi J/\psi$	Belle
	3873.4 ± 1.4	-	$B \to KX \to K\pi\pi J/\psi$	BaBar
	_	-	$B ightarrow X ightarrow \pi \pi \pi J/\psi$	Belle
	-	-	$B ightarrow X ightarrow \gamma J/\psi$	Belle
	$3871.3 \pm 0.7 \pm 0.4$	-	$p \overline{p} ightarrow X ightarrow \pi \pi J/\psi$	CDF
	$3871.8 \pm 3.1 \pm 3.0$	-	$p \overline{p} ightarrow X ightarrow \pi \pi J/\psi$	DØ
	$avg = 3871.9 \pm 0.5$			
X(3940)	$3943\pm 6\pm 6$	< 52	$e^+e^- \rightarrow J/\psi X \rightarrow J/\psi D\bar{D}^*$	Belle
Y(3940)	$3943 \pm 11 \pm 13$	$87\pm22\pm26$	$B \to K Y \to K \pi \pi \pi J/\psi$	Belle
Z(3930)	$3931\pm4\pm2$	$20\pm8\pm3$	$\gamma\gamma ightarrow Z ightarrow Dar{D}$	Belle
Y(4260)	$4259\pm8\pm4$	$88\pm23\pm5$	$e^+e^- \rightarrow \gamma_{ISR} Y \rightarrow \gamma_{ISR} J/\psi \pi \pi$	BaBar

Theoretical studies

- Tetraquarks, hybrids, glueballs, molecular states and charmonium ...
- Mostly focus on the decay properties of the X,Y,Z's
- We will study the production properties of them, but assuming charmonium

Production in *B* **decays**

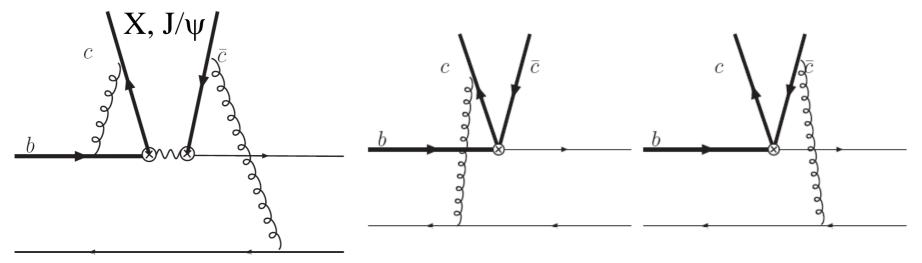
There are two *B* factories: BaBar and Belle. They have accumulated a large number of events. Utilizing these data, we could uncover the structure of mysterious mesons

mass(MeV)	width(MeV)	production/decay mode	significance	experiment
$3872.0 \pm 0.6 \pm 0.5$	< 2.3 95% C.L.	$B^{\pm} \rightarrow K^{\pm}X \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$	10σ	Belle
$3871.3 \pm 0.7 \pm 0.4$	resolution	$p\bar{p} \rightarrow X \rightarrow \pi^+\pi^- J/\psi$	11.6σ	CDFII
$M(J/\psi)$ + 774.9 ± 3.1 ± 3.0	resolution	$p\bar{p} \to X \to \pi^+\pi^- J/\psi$	5.2σ	DØ
3873.4 ± 1.4	-	$B^- \to K^- X \to K^- \pi^+ \pi^- J/\psi$	3.5σ	BaBar

However

Color octet contribution is dominant in B decays, which gives large theoretical uncertainties

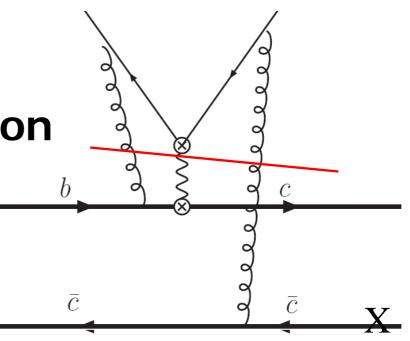
Although the B factories provide many events, but the theoretical studies are hampered by our understanding of non-perturbative QCD



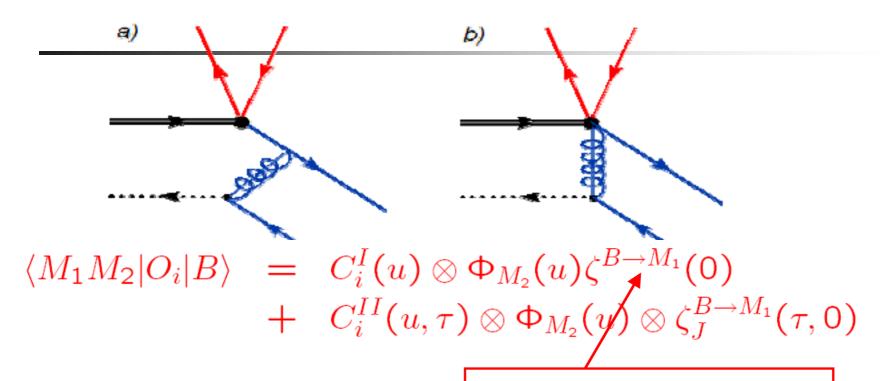
LHC-b experiment will produce a large number of B_c in the near future

Charmonium production in B_c decays are dominated by factorizable contribution

the production of charmonia in *B_c* decays can provide a unique insight to these mesons



Soft collinear effective theory (SCET)



Non-perturbative part

Perturbative part:

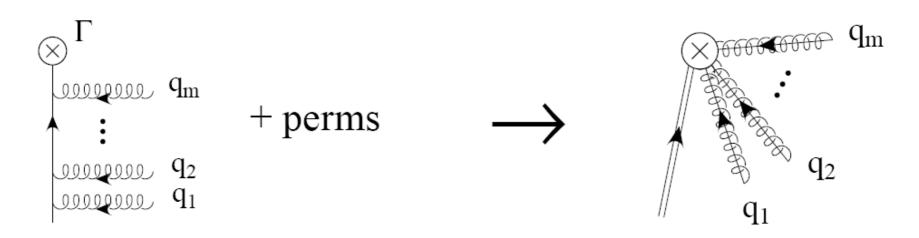
 $\zeta_J^{B \to M_1}(\tau, 0) = J(\tau, \omega, v) \otimes \Phi_B(\omega) \otimes \Phi_{M_1}(v)$

Proof of factorization at soft-collinear-effective-theory

- In SCET, the light and fast-moving meson is described by collinear field. While the heavy mesons are described by the heavy quark field and soft field just as in the heavy-quark-effectivetheory
- Interactions between heavy quark and collinear field can be summed as in the following figure

A matching calculation which shows how SCET works

 On the left, collinear gluons hit an incoming soft heavy quark. Integrating out the off-shell quark propagators gives the effective theory operator on the right which contains a factor of W_c



Proof of factorization at B_c decays

- At the leading power of 1/m_b, the decay matrix element can be decomposed into the B_c → (cc-bar) form factor and a convolution of a short distance coefficient
- with the light-cone wave function of the emitted light meson:

 $\langle X(\bar{c}c)M|H_{eff}|\bar{B}_c\rangle = \phi_M(u)\otimes T(u)F^{B_c\to X}$

$B_c \rightarrow cc$ -bar Form factors

The form factors for $B_c \rightarrow J/\psi$ and $B_c \rightarrow X(3872)$ (1⁺⁺ state) transitions induced by the vector and axial-vector currents are defined by:

$$\langle J/\psi(P'',\varepsilon''')|V_{\mu}|B_{c}^{-}(P')\rangle = -\frac{1}{m_{B_{c}}+m_{J/\psi}}\epsilon_{\mu\nu\alpha\beta}\varepsilon''^{*\nu}P^{\alpha}q^{\beta}V^{PV}(q^{2}),$$
(5)

$$\langle J/\psi(P'',\varepsilon''')|A_{\mu}|B_{c}^{-}(P')\rangle = i\{(m_{B_{c}}+m_{J/\psi})\varepsilon''_{\mu}A_{1}^{PV}(q^{2}) - \frac{\varepsilon''^{*}\cdot P}{m_{B_{c}}+m_{J/\psi}}P_{\mu}A_{2}^{PV}(q^{2}) - 2m_{J/\psi}\frac{\varepsilon''^{*}\cdot P}{q^{2}}q_{\mu}[A_{3}^{PV}(q^{2}) - A_{0}^{PV}(q^{2})]\},$$
(6)

$$\langle X(P'',\varepsilon'')|V_{\mu}|B_{c}^{-}(P')\rangle = (m_{B_{c}}-m_{X})\varepsilon_{\mu}^{*}V_{1}^{PA}(q^{2}) - \frac{\varepsilon^{*}\cdot P'}{m_{B_{c}}-m_{X}}P_{\mu}V_{2}^{PA}(q^{2}) - 2m_{X}\frac{\varepsilon^{*}\cdot P'}{q^{2}}q_{\mu}\left[V_{3}^{PA}(q^{2}) - V_{0}^{PA}(q^{2})\right],$$
(7)

$$\langle X(P'',\varepsilon'')|A_{\mu}|B_{c}^{-}(P')\rangle = -\frac{i}{m_{B_{c}}-m_{X}}\epsilon_{\mu\nu\rho\sigma}\varepsilon^{*\nu}P^{\rho}q^{\sigma}A^{PA}(q^{2}).$$
(8)

where P = P' + P'', q = P' - P'' and the convention $\epsilon_{0123} = 1$ is adopted.

Extraction of Form factors

- **Future Experimental semi-leptonic** *B_c* **decays**
- Lattice QCD
- QCD sum rules and light-cone sum rules:
 - Y. M. Wang, CDL, arXiv:0707.4439 [hep-ph]
- light-front quark model:
 - W. Wang, Y. L. Shen and CDL, EPJC 51:841,2007

$B_c \rightarrow X, Y, Z$ form factors in light-cone sum rules

	decay modes	$f_{+}(0)$	$f_{-}(0)$
	$B_c ightarrow \eta_c^\prime$ (1s ₀)	$0.82\substack{+0.03+0.02+0.01+0.17\\-0.01-0.02-0.01-0.19}$	0
X,Y = 0^{-+}	$B_c \rightarrow X(3940)(3^1S_0)$	$0.46\substack{+0.01+0.00+0.00+0.10\\-0.01-0.01-0.01-0.11}$	0
0++	$B_c \to \chi_{c0}'(2^3 P_0)$	$2.6^{+0.1+0.0+0.0+0.2}_{-0.1-0.1-0.1-0.2}$	0

X,Y = 1 ⁺⁺ , 1 ⁺⁻	A(0)	$V_1(0)$	$V_{2}(0)$
$B_c \to X(3872)(2^3 P_1)$	$-0.53\substack{+0.02+0.01+0.01+0.02\\-0.03-0.00-0.00-0.02}$	$-3.76\substack{+0.12+0.05+0.02+0.01\\-0.18-0.02-0.00-0.01}$	$-0.53^{+0.02+0.01+0.01+}_{-0.03-0.00-0.00-}$
$B_c \to X/Y(3940)(2^3P_1)$	$-0.51^{+0.02+0.01+0.01+0.02}_{-0.02-0.00-0.01-0.02}$	$-3.87^{+0.11+0.05+0.02+0.15}_{-0.19-0.03-0.02-0.15}$	$-0.51^{+0.02+0.01+0.01+}_{-0.02-0.00-0.01-}$
$B_c \rightarrow h_c(3527)(^1\mathrm{p}_1)$	$0.28\substack{+0.01+0.01+0.01+0.01\\-0.01-0.00-0.00-0.01}$	$1.51^{+0.04+0.04+0.02+0.06}_{-0.02-0.04-0.02-0.06}$	$0.28\substack{+0.01+0.01+0.01+0\\-0.01-0.00-0.00-0}^{+0.01+0.01+0}$

$B_c \rightarrow X, Y, Z$ form factors in light-cone sum rules

Y = 1⁻⁻

decay mode	V(0)	$A_1(0)$	$A_2(0)$
$B_c \to Y(4260)(3^3 D_1)$	$4.1^{+0.1+0.7+0.4+0.3}_{-0.1-0.6-0.3-0.3} \times 10^{-2}$	$1.7^{+0.1+0.3+0.2+0.1}_{-0.0-0.3-0.1-0.1} \times 10^{-2}$	$4.1^{+0.1+0.7+0.4+0.3}_{-0.1-0.6-0.3-0.3} \times 1$
$B_c \to \psi(2^3 S_1)$	$0.90^{+0.03+0.02+0.02+0.04}_{-0.02-0.03-0.02-0.05}$	$0.38\substack{+0.01+0.01+0.00+0.02\\-0.01-0.02-0.01-0.02}$	$0.90^{+0.03+0.02+0.02+0}_{-0.02-0.03-0.02-0}$
$B_c \to \psi(1^3 D_1)$	$2.3^{+0.1+0.1+0.1+0.1}_{-0.0-0.2-0.1-0.1} \times 10^{-2}$	$1.0^{+0.0+0.1+0.1+0.0}_{-0.0-0.1-0.1-0.0} \times 10^{-2}$	$2.3^{+0.1+0.1+0.1+0.1+0.1}_{-0.0-0.2-0.1-0.1} \times 1$

$B_c \rightarrow X(3940) lv_l$ in lightcone sum rules

$$0^{-+} \begin{cases} B_c \to X(3940)(3^1S_0)e\bar{\nu}_e & 1.8^{+0.1+0.0+0.8+0.6}_{-0.1-0.1-0.9-0.7} \times 10^{-4} \\ B_c \to X(3940)(3^1S_0)\tau\bar{\nu}_\tau & 5.0^{+0.4+0.0+2.1+1.7}_{-0.2-0.2-2.4-2.0} \times 10^{-6} \end{cases}$$

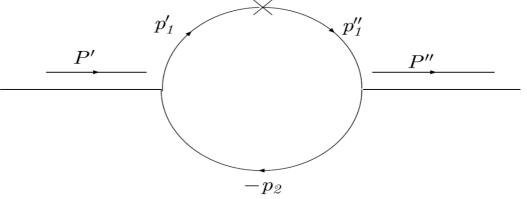
More than 1 order of magnitude difference between the two kinds of quantum number assignments

$$\mathbf{1}^{++} \begin{cases} B_c \to X/Y(3940)(2^3P_1)e\bar{\nu}_e & 6.1^{+0.5+0.1+0.3+2.1}_{-0.3-0.2-0.3-2.4} \times 10^{-3} \\ B_c \to X/Y(3940)(2^3P_1)\tau\bar{\nu}_\tau & 2.3^{+0.2+0.0+0.2+0.8}_{-0.2-0.0-0.2-0.9} \times 10^{-4} \end{cases}$$

Form factor calculation in light front quark model

 To calculate the amplitude for the transition form factor, we need the following Feynman rules for the meson-quark-antiquark vertices

 $i\Gamma'_{P} = H'_{P}\gamma_{5}, \qquad \text{Pseudoscalar}$ $i\Gamma'_{V} = iH'_{V}[\gamma_{\mu} - \frac{1}{W'_{V}}(p'_{1} - p_{2})_{\mu}], \qquad \text{Vector}$ $i\Gamma'_{A} = -H'_{A}[\gamma_{\mu} + \frac{1}{W'_{A}}(p'_{1} - p_{2})_{\mu}]\gamma_{5} \quad \text{Axial} - \text{vector}$



In light-front quark model, the transition amplitude can be expressed as the convolution of the wave functions

$$\mathcal{B}_{\mu}^{PV} = -i^{3} \frac{N_{c}}{(2\pi)^{4}} \int d^{4} p_{1}' \frac{H_{P}'(iH_{V}'')}{N_{1}'N_{1}''N_{2}} S_{\mu\nu}^{PV} \varepsilon''^{*\nu}, \qquad ($$
where $N_{1}'^{(\prime\prime\prime)} = p_{1}'^{(\prime\prime\prime)2} - m_{1}'^{(\prime\prime\prime)2} + i\epsilon, N_{2} = p_{2}^{2} - m_{2}^{2} + i\epsilon$ and
$$S_{\mu\nu}^{PV} = (S_{V}^{PV} - S_{A}^{PV})_{\mu\nu}$$

$$= \operatorname{Tr} \left[\left(\gamma_{\nu} - \frac{1}{W_{V}''} (p_{1}'' - p_{2})_{\nu} \right) (p_{1}'' + m_{1}'') (\gamma_{\mu} - \gamma_{\mu}\gamma_{5}) (p_{1}' + m_{1}') \gamma_{5} (-p_{2} + m_{2}) \right]$$

B_c→X(3872) pi (K^(*),rho) in light front quark model

$$\begin{split} \mathbf{X} = & \left\{ \begin{array}{l} & \mathrm{BR}(B_c^- \to X(3872)\pi^-) = \left(1.7^{+0.7}_{-0.6}, -0.2}_{-0.4}) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^-) = \left(1.3^{+0.5}_{-0.5}, -0.2}_{-0.3}\right) \times 10^{-5} \\ & \mathrm{BR}(B_c^- \to X(3872)\rho^-) = \left(4.1^{+1.6}_{-1.4}, -0.1}_{-0.4}, -0.1\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.4^{+0.9}_{-0.8}, -0.3}_{-0.5}\right) \times 10^{-5} \\ & \mathbf{X} = & \left\{ \begin{array}{c} & \mathrm{BR}(B_c^- \to X(3872)\pi^-) = \left(1.4^{+0.6}_{-0.5}, -0.0}_{-0.5}\right) \times 10^{-3} \\ & \mathrm{BR}(B_c^- \to X(3872)K^-) = \left(1.1^{+0.4}_{-0.4}, -0.0}_{-0.4}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^-) = \left(3.5^{+1.4}_{-1.2}, -0.2_{-1.2}\right) \times 10^{-3} \\ & \mathrm{BR}(B_c^- \to X(3872)K^-) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to X(3872)K^{*-}) = \left(2.0^{+0.8}_{-0.7}, -0.1_{-0.7}\right) \times 10^{-4} \\ & \mathrm{BR}(B_c^- \to$$

Summary

- The factorization tool is essential in hadronic B (B_c) decays
- We prove the factorization in B_c → X(cc-bar) M decays
- We calculate the form factors using the light-front quark model and light cone sum rules
- There are large differences between the X,Y,Z production rates in B_c decays for different Lorentz structure

Thank you!