Double-charmed Baryons

The only experimental information about DCB gives SELEX collaboration:

$\Xi_{cc}^{+} = (ccd)^{+}$	$M_{\Xi^+} = 3443 \mathrm{MeV},$
$\Xi_{cc}^{+*} = (ccd)^+$	$M_{\Xi^{+*}} = 3520 \mathrm{MeV},$
$\Xi_{cc}^{++} = (ccu)^{++}$	$M_{\Xi^{++}} = 3541 \mathrm{MeV},$

There are several questions to SELEX results:

1) Lifetime

2) Cross sections

Theoretical information about DCB:

1) Mass spectrum

- 2) Life time and leading decay modes
- 3) Cross section

Double-charmed Baryons

Mass spectrum theoretical predictions:

- Potential Models (two step calculation)
- QCD Sum Rules
- QCD Effective field theory
- Lattice QCD

PM predictions for ground state cc-diquark $\overline{3}_c$ are [V. Kiselev,

[V. Kiselev, A.Onishchenko, A.L.]

 $M(\Xi_{cc}^{+}) = 3478 \,\text{MeV}, \qquad 1S1S \qquad 1/2^{+} \\ M(\Xi_{cc}^{+*}) = 3610 \,\text{MeV}, \qquad 1S1S \qquad 3/2^{+} \end{cases} \Delta M \sim 40 \,\text{MeV}$

Metastable state (2P1S) $\frac{1}{2}$ (3702) have L=1, S=0 for diquark.

Transitions to the ground state (L=0, S=1) requires simultaneous change of orbital momentum and spin.

Double-charmed Baryons

Sum Rules

 $M(\Xi_{cc}^{+}) = 3.47 \,\text{GeV},$

[V. Kiselev, A.Onishchenko, A.L.]

(without HF splitting)

Lattice QCD

[R.Lewis *et al*]

 $M\left(\Xi_{cc}^{+}\right) = 3.600 \,\mathrm{GeV}$

 $\pm 20 \,\mathrm{MeV}$

Spin-dependent potential

Hyperfine splitting $\Delta = M \left(\Xi_{cc}^{+*} \right) - M \left(\Xi_{cc}^{+} \right)$ [V. Kiselev, A.Onishchenko, A.L.]PM: $\Delta = 130 \text{ MeV} \pm 30 \text{ MeV}$ [N.Brambilla *et al*]QCDEFT $\Delta = 120 \text{ MeV} \pm 40 \text{ MeV}$ [N.Brambilla *et al*]Lat.QCD $\Delta = 76.6 \text{ MeV}$ [R.Lewis *et al*]

Excited states spectrum

Figure 1: The spectrum of doubly charmed baryons: Ξ_{cc}^{++} and Ξ_{cc}^{+} .

Lifetimes of DCB

$$\Gamma_{\Xi_{cc}^{(*)}} = \frac{1}{2M_{\Xi_{cc}^{(*)}}} \left\langle \Xi_{cc}^{(*)} \left| T \right| \Xi_{cc}^{(*)} \right\rangle \qquad T = \operatorname{Im} \int d^4 x \left\{ T H_{eff} \left(x \right) H_{eff} \left(0 \right) \right\}$$

Where $H_{eff} = \frac{G_F}{2\sqrt{2}} V_{uq_1} V_{cq_1}^* \left[C_+(\mu) O_+ + C_-(\mu) O_- \right] + h.c.$ is standard hamiltonian of weak c-quark transitions

In decays of heavy quarks released energy is significant, so it is possible to expand H_{eff} in the series of local operators suppressed by inverse powers of heavy quark mass

Lifetimes of DCB

For example, for semileptonic decay mode $\Gamma_{sl} = 4\Gamma_c(\{1 - 8\rho + 8\rho^3 - \rho^4 - 12\rho^2 \ln \rho\} + E_c\{5 - 24\rho + 24\rho^2 - 8\rho^3 + 3\rho^4 - 12\rho^2 \ln \rho\} + K_c\{-6 + 32\rho - 24\rho^2 - 2\rho^4 + 24\rho^2 \ln \rho\} + G_c\{-2 + 16\rho - 16\rho^3 + 2\rho^4 + 24\rho^2 \ln \rho\}),$

where

$$\Gamma_{c} = |V_{cs}|^{2} \frac{G_{F}^{2} m_{c}^{5}}{192\pi^{3}},$$

$$K_{c} = -\left\langle \Xi_{cc}^{(*)}(v) \middle| \overline{c}_{v} \frac{(iD)^{2}}{2m_{c}^{2}} c_{v} \middle| \Xi_{cc}^{(*)}(v) \right\rangle, \quad G_{c} = -\left\langle \Xi_{cc}^{(*)}(v) \middle| \overline{c}_{v} G_{\alpha\beta} \sigma^{\alpha\beta} c_{v} \middle| \Xi_{cc}^{(*)}(v) \right\rangle, \quad E_{c} = G_{c} + K_{c}$$

In numerical estimates we have used following parameter values:

$$\begin{split} m_c = 1.6 \; GeV \;\; m_s = 0.45 \; GeV \;\; m_q = 0.3 \; GeQ \\ M(\Xi^{++}{}_{cc}) = M(\Xi^{+}{}_{cc}) = 3.56 \; GeV \;\; \Delta M_{HF} = 0.1 \; GeV \\ |\psi_{diq}(0)| = 0.17 \; GeV^{3/2} \end{split}$$

Lifetimes of DCB

Mode or decay	Width, ps^{-1}	Contribution in $\%$	Contribution in %
mechanism		(Ξ_{cc}^{++})	(Ξ_{cc}^+)
$c_{spec} \rightarrow s \bar{d} u$	2.894	124	32
$c \rightarrow s e^+ \nu$	0.380	16	4
PI	-1.317	-56	—
WS	5.254	_	59
$\Gamma_{\Xi_{cc}^{++}}$	2.337	100	—
$\Gamma_{\Xi_{cc}^+}$	8.909	_	100

$$\tau_{\Xi_{cc}^{++}} = 0.43 \,\mathrm{ps}, \qquad \tau_{\Xi_{cc}^{+}} = 0.12 \,\mathrm{ps}$$
$$Br(\Xi_{cc}^{++} \to l\nu + X) = 16\%, \qquad Br(\Xi_{cc}^{+} \to l\nu + X) = 4\%,$$

Exclusive decays in NRQCD sum rules

Quark loop for 3-point correlator in the baryon decay

For $1/2 \rightarrow 1/2$ transition there are 6 form-factors:

 $\left\langle \Xi_{F}(p_{F}) \middle| J_{\mu} \middle| \Xi_{I}(p_{I}) \right\rangle = \overline{u}(p_{F}) \left\{ \gamma_{\mu} G_{1}^{V} + v_{\mu}^{I} G_{2}^{V} + v_{\mu}^{F} G_{3}^{V} + \gamma_{5} \left(\gamma_{\mu} G_{1}^{A} + v_{\mu}^{I} G_{2}^{A} + v_{\mu}^{F} G_{3}^{A} \right) \right\} u(p_{I})$

These 6 f.f. are independent. However, in NRQCD in LO for small recoil it is possible to obtain following relations:

 $G_{1}^{V} + G_{2}^{V} + G_{3}^{V} = \xi^{IW}(w), \qquad G_{1}^{A} = \xi^{IW}(w)$

Only 2 f.f. are not suppressed by heavy quark mass:

$$G_{1}^{V}=G_{1}^{A}=\boldsymbol{\xi}^{IW}\left(\boldsymbol{w}\right)$$

In the case of zero recoil $\xi^{W}(1)$ is determined from Borell transfromation

$$\xi^{IW}(w) = \frac{1}{(2\pi)^2} \frac{1}{8M_I M_F Z_I Z_F} \int_{(m_1+m_3)^2}^{s_I^{th}} \int_{(m_1+m_2)^2}^{s_F^{th}} \rho(s_I, s_F, q^2) ds_I ds_F$$
$$\times \exp(-\frac{s_I - M_I^2}{B_I^2}) \exp(-\frac{s_F - M_F^2}{B_F^2}),$$

For $\Xi_{cc} \rightarrow \Xi_{cs}$ transition

Mode	$\xi(1)$, sum rules	$\xi(1)$, pot.model
$\Xi_{cc} \to \Xi_{cs}$	0.99	1.

For calculation of exclusive widths one can adopt pole model

$$\xi^{IW}(w) = \xi_0 \frac{1}{1 - \frac{q^2}{m_{pole}^2}} \qquad m_{pole} = 1.85 \text{ GeV for } c \to s \text{ transitions.}$$

Mode	Br (%)	Mode	Br (%)
$\Xi_{cc}^+ \to \Xi_c^0 \overline{l} \nu_l$	7.5	$\Xi_{cc}^{++} \to \Xi_c^+ \overline{l} \nu_l$	16.8
$\Xi_{cc}^+ \to \Xi_c^0 \pi^+$	11.2	$\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$	15.7
$\Xi_{cc}^+ \to \Xi_c^0 \rho^+$	33.6	$\Xi_{cc}^{++} \to \Xi_c^+ \rho^+$	46.8

Production of Ξ_{cc} -baryons

In all papers it was assumed, that

 $\sigma[\Xi_{cc}] \equiv \sigma[(cc)_3]$

This is quite reasonable assumption in the framework of NRQCD, where, for example, octet states transforms to heavy quarkonium. Analogously, we have to assume, that dissociation of $(cc)_3$ into *DD* is small.

- Similar to cc-quarkonium production cross sections factorizes into hard (pertubative) and soft (non-pertubative) parts.
- In both cases second part is described by wave function of bound state at origin.
- That's why it is reasonable to compare $J/\psi c\bar{c}$ and $\Xi c\bar{c}$ final states. In this case only one uncertainty remains the of squared wave functions at origin.

4c-sector

LO calculations for $\sigma(4c)$ at $\sqrt{s} = 10.6 \text{ GeV}$ gives $\sigma(e^+e^- \rightarrow c\overline{c}c\overline{c}) \approx 372 \text{ fb}$ at m_c=1.25 GeV $\alpha_s=0.24$ It should be compared with $\sigma_{\text{tot}}(c\overline{c})$ $\sigma(e^+e^- \rightarrow c\overline{c}) \approx 1.03 \text{ nb}$ This gives $R = \frac{\sigma(4c)}{\sigma(2c)} \sim 3.7 \times 10^{-4}$

At Z-pole

 $R_{Z} \sim 2.3 \times 10^{-2}$

Main uncertainties come from errors in m_{c} and α_{s}

$$X = (c\overline{c}) = \eta_c, J/\psi, \chi_c(1P), \psi', \dots$$

1) Fragmetation mechanism

$$D_{c \to X}(z) = \frac{2(2J+1)}{27\pi} \frac{|R(0)|^2}{m^3} \alpha_s^2 \phi(z) \qquad z = \frac{2E_X}{\sqrt{s}}$$

 M^2 /s corrections are neglected (M^2 /s <<1)

2) Complete calculations (with M²/s corrections)

σ(η _c)	= 40	(49) fb),	[A.Berezhnoi, A.L.]
σ(J/ ψ)	= 104	(148) f	ⁱ b,	[K.Y. Liu, Z.G. He, K.T. Chao]
σ(χ _{c0})	=	(48.8)	fb	
σ(χ _{c1})	=	(13.5)	fb	
σ(χ _{c2})	=	(6.3)	fb	

Complete calculations deviate from fragmetation calculations at $\sqrt{s} = 10.6 \text{ GeV}$ M²/s terms are important

3) Quark-Hadron duality

$$\int_{2m_{c}}^{2m_{D}+\Delta} dm_{c\overline{c}} \frac{d\sigma\left(e^{+}e^{-} \rightarrow (c\overline{c})_{sing} + c + \overline{c}\right)}{dm_{c\overline{c}}} = 280 \,\mathrm{fb}$$

$$m_{c} = 1.25 \,\mathrm{GeV} \qquad \qquad \alpha_{s} = 0.24 \qquad \qquad \Delta = 0.5 \,\mathrm{GeV}$$

$$\int d\sigma \left[e^{+}e^{-} \rightarrow (c\overline{c})_{sing}^{S=1} + c + \overline{c}\right] = 204 \,\mathrm{fb}$$

$$\int d\sigma \left[e^{+}e^{-} \rightarrow (c\overline{c})_{sing}^{S=0} + c + \overline{c}\right] = 76 \,\mathrm{fb}$$

It should be compared with total sum of complete calculations.

$$\sigma_{\rm tot}\left(Q\overline{Q}\right) = 216\,{\rm fb}$$

Q-H duality does not contradict Color Singlet model within uncertainties in $m_c \; \alpha_s$ and $\; \Delta$

a) fragmentation approach

S=1 $D_{c \to cc}(z)$ similar to $D_{c \to J/\psi}(z)$

Difference in wave functions $\mid \Psi_{J/\,\psi}(0) \mid^2$ and $\mid \Psi_{cc}(0) \mid^2$

Again, similar to J/ ψ case, at $\sqrt{s} = 10.6 \text{ GeV}$ complete calculations for vector (cc)₃ -diquark are needed

b) Quark-Hadron duality

One inclusive cross section for vector $\overline{3}_c$ in S=1

 $\sigma(\Xi_{cc} + c + \overline{c}) \sim 115 \div 170 \,\text{fb}$

Uncertainties are caused by errors in $\alpha_{\rm s}$ and Δ

This value is close to results of complete calculations with $\Psi_{cc}(0)$ taken from PM.

Conclusion

1)
$$\sigma(e^+e^- \rightarrow \Xi_{cc} + X) \sim 100 \,\text{fb}$$
 at $\sqrt{s} = 10.6 \,\text{GeV}$
(at LHC $\sigma(e^+e^- \rightarrow \Xi_{cc} + X) \sim 122 \,\text{nb}$)

2) For lumonocity L=10³⁴ cm⁻² s⁻¹ it gives ~10⁴ Ξ_{cc} -baryons per year

3) Taking into account Br ~10⁻¹ in exclusive modes we expect $10^3 \Xi_{cc}$ events per year

DIXI