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Physical observable considered:

the heavy quarkonium (cc̄, bb̄) contribution to the
production rate of lepton–antilepton pairs from a
thermal plasma.
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Surprisingly, despite asymptotic freedom, the existence
of a high temperature does not necessarily make the
theoretical determination of the properties of heavy
quarkonium any easier than at zero temperature.

In other words, all standard approximation methods
develop further systematic errors at T > 0.
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A. Lattice QCD

T = 0: finite volume and lattice spacing;
non-chiral quarks with unphysical masses.

T > 0: analytic continuation from numerical data.

B. Potential models

T = 0: not theoretically consistent.

T > 0: which potential to use?

4



C. Perturbation theory

At T > 0, perturbation theory suffers from
serious infrared problems, which require complicated
resummations. As a result, the perturbative series is
typically of the form (αs = g2/4π; 1/4π’s omitted)

〈O〉 ∼ 1 + #1 g2 + #2 g3 + #3 g4 ln
1

g
+ #4 g6 + ... ,

where some coefficients can be non-perturbative.

Moreover, even if the coefficients were known, the
convergence of the series can be very slow.
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Practical approach

Compute the observable with many different methods,
possessing complementary systematic errors, and hope
to find a consistent picture!

Here: perturbation theory, i.e. “just” graphs:
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Momentum/energy scales

Vacuum: M, g2M,g4M, . . .

Finite temperature: T, gT, g2T, . . .

The procedure now depends on the ratio of M and T .

T ∼ g2M ⇒ width ∼ g6M ≪ binding energy ∼ g4M
⇒ bound state exists.

T ∼ gM ⇒ width ∼ g3M ≫ binding energy ∼ g4M
⇒ bound state has melted.

In the following assume, formally, g2M < T < gM .
Then the computation proceeds in the following steps:
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1. Relation of production rate to Green’s function
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1

3
e ˆ̄b (x)γµb̂(x) ,

〈...〉 ≡ Z
−1
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Rather than C̃> one often considers the spectral function:

ρ(Q) =
1

2
(1 − e−

q0

T )C̃>(Q) .

3

5

8



2. Properties of the Green’s function at large M

Restrict to q = 0 and introduce point-splitting:

C>(t, r) ≡
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The r-dependence is not physical ...

C̃>(Q) =

Z ∞

−∞

dt e
iq0t
C>(t, 0) ,

... but it facilitates perturbative solution:
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3. Definition of a real-time static potential

The static potential V>(t, r) is defined to be the term
independent of M in the “exact” Schrödinger equation:

˘

i∂t −
ˆ

2M + V>(t, r) −
∇2

r

M
+ O

` 1

M2

´˜¯

C>(t, r) = 0 .

It can thus be obtained in the limit M → ∞, whereby
the heavy quarks can be replaced by Wilson lines.

Noting that C>(t, r) = CE(it, r), where CE(τ, r) is
the Euclidean Wilson loop, we are lead to

i∂tCE(it, r) ≡ V>(t, r)CE(it, r) .
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Remark: A few different static potentials

From Polyakov loops:

r
1

T
〈Tr[P ] Tr[P †]〉 ≡ e−

Va(r)
T .

From a Wilson loop:

r
1

T 〈Tr[WE(
1

T
, r)]〉 ≡ e−

Vb(r)
T .

From an analytic continuation:

r
τ 〈Tr[WE(τ, r)]〉 ≡ CE(τ, r) .
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4. Result for our real-time static potential

In Hard Thermal Loop perturbation theory, to g2:

ReV
(2)
> (∞, r) = −

g2CF
4π

[

mD +
exp(−mDr)

r

]

,

Im V
(2)
> (∞, r) = −

g2TCF
4π

φ(mDr) ,

where mD ∼ gT is the Debye mass, CF ≡ 4/3, and

φ(x) = 2

∫ ∞

0

dz z

(z2 + 1)2

[

1 −
sin(zx)

zx

]

,

is finite and strictly increasing, with the limiting values
φ(0) = 0, φ(∞) = 1.
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Physics of real part:
2 × thermal mass correction for a heavy quark +
r-dependent Debye-screened potential.

Physics of imaginary part:
almost static (off-shell) gluons may disappear due to
interactions with hard particles in the plasma.

2 2

nFnB(1 − nF) nF(1 + nB)(1 − nF)

This is the phenomenon of Landau-damping.

Consequently, there is no stationary wave function: the
bound state is a short-lived transient!
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5. Result for spectral function
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Basic qualitative structure as suggested by Matsui and
Satz (1986) from phenomenological arguments.
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Conclusions

Useful definition of a finite-temperature real-time static
potential is non-trivial. V> originates from a physical
observable; it has both a real and an imaginary part.

Using this potential, the existence and disappearance
of the quarkonium peak in the dilepton production rate
is qualitatively a weak-coupling phenomenon.

The conceptual point: at high temperatures, there is
no stationary wave function. The bound state is a
short-lived transient!

In the end, for quantitative understanding, need to
compare with other methods.
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