Feasibility study for B_c meson and quarkonia studies at CMS

Aafke Kraan INFN Pisa On behalf of the CMS collaboration

International Workshop on Heavy Quarkonium 2007 17-20 October 2007, DESY Hamburg

Outline

Introduction

- Feasibility to study B_c-meson at CMS
 - Introduction
 - Event generation
 - Event selection
 - Systematic errors & results
- Quarkonia studies in CMS
 - Introduction & analysis overview
 - J/psi reconstruction & trigger studies
 - J/psi production mechanism studies

Conclusions

Heavy flavour physics at CMS

- LHC: p-p collisions at E_{CM} = 14.0 TeV, • Initial $\mathcal{L} \sim 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$, nominal $\mathcal{L} \sim 1 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- CMS: Competition with ALICE, LHCb, (ATLAS)...
 - but...CMS has excellent muon system, tracker, large acceptance!
 - Solution Most analyses here based on medium and high P^T muons

The B_c meson

Goal: measure mass and lifetime of B_c-meson with CMS

Theory-predictions:

```
ground state of bc
unique properties!!
```

- B_c production in hadron collider: many theoretical uncertainties! σ (B_c) ~ 10⁻³σ(other B-mesons) [E.g:Chang&Wu,EPJC38,267]
- B_c mass: M=6.24±0.05 GeV See e.g: [Kwong,Rosner, PRD44, 212] [Eichten, Quigg, PRD49, 5845]
- B_c decay (only weak!):
 - b-decay with c as spectator: 20-25%
 - c-decay with b as spectator: 64-72%
 - annihilation decays: 6.6-7.2%

Experiments:

■ Tevatron: CDF: B_c mass: 6.2741±0.0032 (stat.)±0.0026(syst.)
 → channel B_c→J/ψ π
 ■
 D0: lifetime: 0.444^{+0.039}_{-0.036} (stat.)^{+0.039}_{-0.034}(syst.) ps
 → channel B_c→J/ψ e ν
 4 of 20

Event generation

[CMS note 2006/118 Meng,Tao, Chen]

- Signal: $B_c \rightarrow J/\psi \pi$, $J/\psi \rightarrow \mu\mu$ generated with BCVEGPY generator
- Generator cuts (simulate L1 and HLT trigger):

Backgrounds:

- 1) Other b hadrons' decay include J/ψ
- 2) Prompt J/ψ
- 3) cc, bb→µµx
- 4) Generic QCD
- 5) W+jets, Z+jets

8

4

5 of 20

16

20

[Chang&Wu, EPJC38:267,2004]

12

 $B_c P_T$ (GeV)

Event selection

- Step 0: trigger, not included in this study.
 See slide 13!
- Step 1: J/psi candidates:
 - 2 muons (P_T>4 GeV, IηI<2.2), same vertex, different charge, M_{inv} (3.0,3.2) GeV
- Step 2: Pion candidates:
 - o pT≥2 GeV ,lηl≤2.4, not identified as lepton, same vertex as muons
- Step 3: Suppress prompt J/psi background
 - Cut on proper decay length (L^{PDL}_{xy}) and significance (L^{PDL}_{xy} /σ_{xy})

Event selection

Step 4: invariant mass window cut: M _{J/ψπ} ∈ [6.25, 6.55] GeV

Summary of selection for B_c-events (~1 fb⁻¹):

signal B _c	120±11
total bg	2.6±0.4
B+	0.7±0.2
B _s	0.1
B ⁰	0.8±0.3
Prompt J/ψ	0.1
QCD	0.7±0.1
۸ _b	0.1
ccbar	0.01
bbar	0.01

7 of 20

Mass and lifetime fit

Sinematic fit Bc→J/ψπ, J/ψ→μμ: totally 3 tracks

- 2 muon tracks: J/ψ mass constraint $M_{\mu\mu}$ =3.096 GeV
- all 3 tracks: from same vertex

 $M(B_c)$: 6402 ± 2 MeV Input MC:6400 MeV Masswidth: 22 MeV

 $c\tau(B_c)$:148.8 ± 13.1 µm Input MC 150 µm $\tau(B_c)$ =0.0496 ± 0.044 ps

8 of 20

Systematic error and results

Systematic error

estimation (1 fb⁻¹) NB pessimistic & conservative!

 When data come, control sample
 B→J/ψ K can be used to improve!

Source	B _c mass (MeV)	В _с ст (µm)
momentum scale	11	0.2
momentum resolution	10	0.8
vertex resolution	-	2.4
sensitivity to cuts	0.1	0.2
MC statistics	-	0.1
Theoretical (pt-spectrum)	-	1.5
Total	14.9	3.0

CMS AN 2006/079 CMS NOTE 2006/118 X.W. MENG, J.Q. TAO, G.M. CHEN

	L (fb ⁻¹)	Signal events	Precision of mass value (MeV)	Precision of lifetime (ps)
CMS B _c →J/ψπ	1	120 ±11	2.0(fit)±14.9(syst)	0.044(fit)±0.010(syst)

Outline

Introduction

- Feasibility to study B_c-meson at CMS
 - Motivations
 - Event generation
 - Event selection
 - Systematic errors & result

Quarkonia studies in CMS

- Motivations & analysis overview
- J/psi reconstruction & triggers
- J/psi production mechanism studies

Conclusions

Motivations & analysis overview

Motivations: More than 30 years after discovery of the J/psi production properties still not well understood...

E.g.: NRQCD succesful in explaining $P_T(J/\psi)$ spectrum at Tevatron (octet mechanism), but not in polarization prediction...

[See: CDF J/psi polarization, arXiv: 0704.0638, see talks yesterday!]

Section 4.15 At LHC: higher P_T values & luminosity allow for new studies!

CMS (p-p) studies concerning quarkonium:

- Solution $f J/\psi \rightarrow \mu\mu$ reconstruction efficiency
- Trigger studies
- Understanding underlying J/ψ production mechanism with complementary observables (in progress)
- Solution $\psi \rightarrow \mu \mu$ (in progress)
- **Solution Set :** J/ψ **polarization measurement** (in progress)
- Detector-studies: quarkonia for detector alignment and calibration

Focus of CMS studies has been on J/psi's!

J/psi reconstruction

- Sessential ingredient in many heavy flavour analysis: J/ $\psi \rightarrow \mu\mu$
- ORCA results (2006). New results in CMSSW coming!

CMS trigger study based on LHC startup conditions: L=10³²cm⁻²s⁻¹

Also relevant (heavy flavour analyses like B_c)

HIGH LEVEL lifetime trigger: Displaced vertex trigger

13 of 20

Outline

Introduction

- Feasibility to study B_c-meson at CMS
 - Introduction
 - Event generation
 - Event selection
 - Systematic errors & results
- Quarkonia studies in CMS
 - Introduction & analysis overview
 - J/psi reconstruction & trigger studies
 - J/psi production mechanism studies

Conclusions

J/psi production studies: PYTHIA

Quarkonium production: PYTHIA 6.409

(Until May 2007: version 6.227)

- Original implementation by S. Wolf
- Singlet & octet mechanism
- Based on NRQCD matrix elements
 [See tuning: M.Bargiotti, CERN-LHCb-2007-042.
- Cross section regularization like gg→gg in underlying event formalism (applies naturally here too!)
 [T. Sjöstrand and M.v.Z, PRD 1987]
- Parton showers Different options for radiation off octet cc: MSTP(149), MSTP(148)

See also my

talk yesterdav

¹⁵ of 20

J/psi production studies: cross section

CMS J/psi differential cross section for 4 production cases:

- Singlet
- 3 octet cases, different showering+fragmentation
- ຍ In 100 pb-1 (singlet+octet): η(mu)<2.5 Ρ_τ(mu)>2.5

Ρ _T (J/ψ)>	Produced	Reconstructed
5 GeV	~2*10 ⁷	~5*10 ⁶
20 GeV	~ 3*10⁵	~2*10 ⁵
50 GeV	~5*10 ³	~3*10 ³

Many parameters influence cross section shape (backup slide 22)!

- ISR
- FSR (e.g. see plot)
- Mass of cc
- Reweighting function
- Conclusion: measuring the cross section does not mean we understand producton! Need more observables [Idea with T. Sjöstrand]

J/psi production studies: new observables!

1-7

"jet"

J/psi

dR

R

- Shower activity of 4 models is different → natural observable= CC Nr charged particles (P_T>0.9, not μ's)⁰= around J/ψ in cone R (e.g. 0.7)
- Differences at high Pt jpsi!
- The particle or momentum density as function of cone size R
- Etcetera... many more variables could be useful... (suggestions welcome for new ones!)

J/psi production studies: challenges

- Main challenges in this study:
 - Technical. Accumulating Monte Carlo statistics (so far no official production), solve by using fast simulation.
 - Background. Non-prompt J/psi background (high cross section at large P_T!!)
 - Theoretical.
 Activity in events can be influenced by many parameters...

Given the generally large activity around non-prompt J/psi's, a wrong estimation of the non-prompt J/psi background could lead to a totally wrong conclusion!!

Plans

- J/psi production measurement proposal is in progress.
- J/psi polarization measurement is in progress.
- No Upsilons shown here! Production is currently going on, we hope to come with proposal for cross section measurement
- Excited states should be studied

Conclusions

- Feasibility to study B_c meson at CMS studied
 - With 1 fb-1 of data CMS can reconstruct 120 $B_c \rightarrow J/\psi\pi$ events
 - The precision on the mass (central value) is (conservative syst err!)
 2 (fit)±15(syst) MeV
 - The precision on the lifetime is (conservative syst err!)
 0.044(fit)±0.010(syst) ps
- Current quarkonia studies in CMS:
 - $J/\psi \rightarrow \mu\mu$ reconstruction efficiency: up to 70% at high $P_T(J/\psi)$
 - <mark>● J/</mark>ψ→μμ trigger
 - Understand the J/psi production mechanism with complementary observables next to cross section measurement. See also my talk yesterday
 - Cross section measurement (in progress)
 - Detector related studies (in progress, not here)

Backup slides

Prompt J/psi differential cross section

Examples of changes in the differential cross section:

