Relativistic corrections to the interquark potential from Lattice QCD

Miho Koma

(Universität Mainz)

International Workshop on Heavy Quarkonium 2007 (QWG5), DESY Hamburg, 18 Oct. 2007

A sequel to the talk "Relativistic corrections to the static potential" by Y.Koma (QWG4,'06)

[Y.Koma, M.Koma & H.Wittig, Phys.Rev.Lett.97('06)122003,
Y.Koma, M.Koma, Nucl.Phys.B769('07)79,
Y.Koma, M.Koma & H.Wittig, PoS(LATTICE 2007)111]

INTRODUCTION

- ▷ Effective field theory for heavy quarkonium ⇒ potential NRQCD (pNRQCD) [Brambilla,Pineda,Soto&Vairo('99-)]
- ▷ Effective Hamiltonian for quarkonium up to $O(1/m^2)$ [Pineda&Vairo('01)]

$$H = \frac{p_1^2}{2m_1} + \frac{p_2^2}{2m_2} + \frac{V^{(0)}(r)}{r} + \frac{1}{m_1} V^{(1,0)}(r) + \frac{1}{m_2} V^{(0,1)}(r) + \frac{1}{m_1^2} V^{(0,1)}(r) + \frac{1}{m_1^2} V^{(0,2)}(r) + \frac{1}{m_1 m_2} V^{(1,1)}(r) + O(1/m^3)$$

- ▷ Interquark potential V(r) = static potential $V^{(0)} +$ relativistic corrections
- \triangleright Once V(r) is obtained, one can compute full spectrum and wavefunctions
- ▷ These potentials need to be determined nonperturbatively
 - Static potential contains a linearly rising term (confinement)
 - Relativistic corrections are related to the static potential through Poincaré invariance (Gromes relation, BBMP relations)

OUR PROJECT

Nonperturbative determination of the interquark potential including relativistic corrections from lattice QCD simulations

We have developed a new method to determine these corrections

 $\triangleright O(1/m)$:

- first lattice result [Koma,Koma,Wittig('06)] [QWG4]
- update [THIS TALK]
- $\triangleright O(1/m^2)$:
 - spin-dependent potential [Koma,Koma('07)] [QWG4]
 - spin-independent (velocity-dependent) potential [THIS TALK]

O(1/m) POTENTIAL — DEFINITIONS

▷ Nonperturbative expression [Brambilla,Pineda,Soto&Vairo('01)]

$$V^{(1)}(r) = -\frac{1}{2} \lim_{\tau' \to \infty} \int_0^{\tau'} dt \ t \left\langle \left\langle g^2 \vec{E}(0,0) \cdot \vec{E}(0,t) \right\rangle \right\rangle_{\rm c}$$

 \triangleright Field strength correlator on the L^3T lattice

$$\langle\langle g^2 E^i(0,0) E^i(0,t) \rangle\rangle_{\mathbf{c}} = \left\langle \begin{array}{c} \left[\begin{array}{c} \\ \mathbf{f} \\ \mathbf$$

We measure this quantity accurately by utilizing the multilevel algorithm and fit it to its spectral representation. The integral is performed analytically.

▷ for all technical details, see [Koma, Koma, NPB769('07)79]

SIMULATION DETAILS

- Setting of the simulation
 - Wilson gauge action
 - Multilevel algorithm, 6 sublattices, 50000 internal updates

$\beta = 6/g^2$	a	Volume	$N_{ m conf}$
5.85	0.123 fm	$18^{3}24$	100
6.00	0.093 fm	$24^{3}32$	45

- NEC SX8@RCNP Osaka University
- ▷ Electric field strength operator: $ga^2E^i \equiv (U_{4i} U_{4i}^{\dagger})/(2i)$ (traceless, with two-leaf-type modification)
- ▷ Huntley-Michael (HM) factor [Huntley & Michael '87]: $Z_{F_{\mu\nu}} = \langle PP^* \rangle / \langle \operatorname{Re} U_{\mu\nu} \rangle_{PP^*}$ (cancel self energies in field strength correlators at $O(g^2)$)

STATIC POTENTIAL & FORCE $> V^{(0)}(r_I) = -\frac{1}{T} \ln \langle P(0)P(r)^* \rangle + O(e^{-(\Delta E_{10})T})$ $> V^{(0)'}(\bar{r}) = \frac{1}{a} \{ V^{(0)}(r) - V^{(0)}(r-a) \}$

- Potential is normalized at r = 0.5 fm
- Force: $V^{(1)'}(\bar{r}) = \frac{1}{a} \{ V^{(1)}(r) V^{(1)}(r-a) \}$
- Good scaling behavior
- Linear behavior at long distance (force: non-zero, constant)

- Potential is normalized at r = 0.5 fm
- Force: $V^{(1)'}(\bar{r}) = \frac{1}{a} \{ V^{(1)}(r) V^{(1)}(r-a) \}$
- Good scaling behavior
- Linear behavior at long distance (force: non-zero, constant)

$O(1/m^2)$ POTENTIAL — DEFINITIONS

- ▷ Spin-dependent potential [Koma, Koma, NPB769('07)79] [QWG4]
- Spin-independent potential [Pineda&Vairo('01)]

$$V_{\rm SI} = \frac{1}{m_1^2} \left(\frac{1}{2} \left\{ p_1^2, V_{p^2}^{(2,0)}(r) \right\} + \frac{V_{l^2}^{(2,0)}(r)}{r^2} l_1^2 + V_r^{(2,0)}(r) \right) + (1 \to 2) + \frac{1}{m_1 m_2} \left(-\frac{1}{2} \left\{ p_1 \cdot p_2, V_{p^2}^{(1,1)}(r) \right\} + \frac{V_{l^2}^{(1,1)}(r)}{2r^2} (l_1 \cdot l_2 + l_2 \cdot l_1) + V_r^{(1,1)}(r) \right)$$

▷ Velocity-dependent potentials V_b, V_c, V_d, V_e

$$V_{p^2}^{(2,0)} = V_d - \frac{2}{3}V_e, \quad V_{l^2}^{(2,0)} = V_e, \quad V_{p^2}^{(1,1)} = -V_b + \frac{2}{3}V_c, \quad V_{l^2}^{(1,1)} = -V_c$$

VELOCITY DEPENDENT POTENTIALS — DEFINITIONS

Nonperturbative expression

$$\begin{split} V_{b}(r) &= -\frac{1}{3} \int_{0}^{\infty} dt \, t^{2} \, \langle \langle g^{2} \vec{E}(\vec{0},0) \cdot \vec{E}(\vec{r},0) \rangle \rangle_{c} \\ V_{d}(r) &= \frac{1}{6} \int_{0}^{\infty} dt \, t^{2} \, \langle \langle g^{2} \vec{E}(\vec{0},0) \cdot \vec{E}(\vec{0},0) \rangle \rangle_{c} \\ \left(\frac{r_{i}r_{j}}{r^{2}} - \frac{\delta_{ij}}{3} \right) V_{c}(r) &= \int_{0}^{\infty} dt \, t^{2} \left[\langle \langle g^{2} E^{i}(\vec{0},0) \, E^{j}(\vec{r},0) \rangle \rangle_{c} - \frac{\delta_{ij}}{3} \langle \langle g^{2} \vec{E}(\vec{0},0) \cdot \vec{E}(\vec{r},0) \rangle \rangle_{c} \right] \\ \left(\frac{r_{i}r_{j}}{r^{2}} - \frac{\delta_{ij}}{3} \right) V_{e}(r) &= -\frac{1}{2} \int_{0}^{\infty} dt \, t^{2} \left[\langle \langle g^{2} E^{i}(\vec{0},0) \, E^{j}(\vec{0},0) \rangle \rangle_{c} - \frac{\delta_{ij}}{3} \langle \langle g^{2} \vec{E}(\vec{0},0) \cdot \vec{E}(\vec{0},0) \rangle \rangle_{c} \right] \end{split}$$

▶ We compute these corrections from the field strength correlators

 \triangleright V_b and V_d

- clean data up to 0.9 fm
- normalized at r = 0.5 fm
- good scaling behavior

 \triangleright V_b and V_d with fit function $V(r) = -\frac{A}{r} + Br + C$

 \triangleright V_c and V_e

- clean data up to 0.9 fm
- normalized at r = 0.5 fm
- good scaling behavior

 \triangleright V_c and V_e with fit function $V(r) = -\frac{A}{r} + Br + C$

BBMP RELATIONS

BBMP relation is derived from Poincaré invariance of field strength correlators (in the continuum limit) [Barchielli,Brambilla,Montaldi&Prosperi('88,90)]

SUMMARY

▷ We have investigated the relativistic corrections to

the heavy quark potential at O(1/m) and $O(1/m^2)$

Current observation...

- \triangleright Measured at 0.2 $\lesssim r \lesssim$ 0.9 fm
- Good scaling behavior
- \triangleright For $V^{(1)}$
 - Linearly rising behavior at $r\gtrsim 0.6~{
 m fm}$
 - A few to 17 percent correction to the string tension
 ⇒ flavor dependent
- **For velocity-dependent potentials**
 - Parametrization with "1/r + linear + constant" function seems to work
 - BBMP relation, satisfied

OUTLOOK

- Simulation with a finer lattice, ongoing
- Update of spin-dependent potentials, ongoing
- Comparison with models and phenomenology, to be done
- Renormalization procedure for the field strength operator, to be improved for better scaling behavior

 $V^{(1)}(R)$

fit result $V(r) = V^{(0)}(r) + \frac{2}{m}V^{(1)}(r) + O(\frac{1}{m^2})$ $V^{(0)}_{\text{fit}}(r) = -\frac{c}{r} + \sigma r + \mu \implies c = 0.297(1)$ $\triangleright V_{\text{fit}}^{(1)}(r) = -\frac{c'}{r} + \mu'$ $\Rightarrow ac' = 0.081(4), \ a^2\mu' = 0.417(1)$ For $m_c = 1.3$ GeV $\Rightarrow 2c'/m_c = 0.26(1)$ For $m_b = 4.7$ GeV $\Rightarrow 2c'/m_c = 0.073(4)$ cf. perturbation theory $\propto 1/r^2$ [Melnikov etal('98), Hoang('99),

Brambilla etal('01)]

[Koma,Koma&Wittig,PRL97('06)]

O(1/m) POTENTIAL — DEFINITIONS

▶ Non-perturbative expression [Brambilla,Pineda,Soto&Vairo('01)]

$$\begin{split} V^{(1)}(r) &= -\frac{1}{2} \lim_{\tau' \to \infty} \int_{0}^{\tau'} dt \ t \langle \langle g \vec{E}(0,0) \cdot g \vec{E}(0,t) \rangle \rangle_{c} \\ &= -\frac{1}{2} \sum_{n=1}^{\infty} \frac{|\langle 0(r) | g \vec{E}(0) | n(r) \rangle|^{2}}{(\Delta E_{n0}(r))^{2}} , \quad \text{(Spectral representation)} \\ \text{where } \hat{T} | n(r) \rangle &= e^{-aE_{n}(r)} | n(r) \rangle, \ \Delta E_{n0}(r) = E_{n}(r) - E_{0}(r), \quad E_{0}(r) = V_{0}^{(0)}(r) \end{split}$$

 \triangleright Field strength correlator on the L^3T lattice

We measure this quantity accurately by utilizing the multilevel algorithm

O(1/m) POTENTIAL — DEFINITIONS

▷ Non-perturbative expression [Brambilla,Pineda,Soto&Vairo('01)]

$$egin{aligned} V^{(1)}(r) &= -rac{1}{2} \lim_{ au' o \infty} \int_{0}^{ au'} dt \; t \langle \langle g ec{E}(0,0) \cdot g ec{E}(0,t)
angle
angle_{ ext{c}} \ &= -rac{1}{2} \sum_{n=1}^{\infty} rac{|\langle 0(r)|g ec{E}(0)|n(r)
angle|^2}{(\Delta E_{n0}(r))^2} \,, \quad ext{(Spectral representation)} \ & ext{where} \; \hat{T}|n(r)
angle = e^{-a E_n(r)} |n(r)
angle, \; \Delta E_{n0}(r) = E_n(r) - E_0(r), \quad E_0(r) = V_0^{(0)}(r) \end{aligned}$$

 \triangleright Field strength correlator on the L^3T lattice

$$\langle\langle gE^{i}(0,0) gE^{i}(0,t)\rangle\rangle_{c} = \sum_{n>0} \left(2|\langle 0(r)|gE^{i}(0)|n(r)\rangle|^{2} e^{-\Delta E_{n0}(r)\frac{T}{2}} \cosh\left(\Delta E_{n0}(r)(\frac{T}{2}-t)\right)\right) + O(e^{-\Delta E_{10}(r)T})$$

We measure this quantity very accurately by utilizing the multilevel algorithm and fit it with its spectral representation

MULTILEVEL ALGORITHM

Modified version for PLCF with two field strength operators

(1) Compute the component of the Polyakov loops with the field strength insertion in each time slice

(2) Compute sublattice correlators

(3) Take average of sublattice correlators through N internal update (iupd) (Large memory is required)

(4) Construct correlation functions from sublattice correlators.

(Average over all spatial points, all possible combinations of two fields insertion for given τ)

 \implies Measurement from 1 conf.

FSC can be measured with high accuracy through the product of stabilized sublattice correlators

FIELD STRENGTH CORRELATORS \triangleright e.g.) r/a = 5 at $\beta = 5.85$ on the 18^324 lattice

• statistical errors are quite small

FIELD STRENGTH CORRELATORS > e.g.) r/a = 5 at $\beta = 5.85$ on the 18^324 lattice

- statistical errors are quite small
- fitting to the spectral rep. of the FSC works nicely

HUNTLEY-MICHAEL FACTOR

▷ Huntley-Michael factor $Z_{F_{\mu\nu}} = \langle PP^* \rangle / \langle \mathbf{Re} U_{\mu\nu} \rangle_{PP^*}$

- dependence on r and relative orientation to the $q\mathchar`-\bar{q}$ axis, $\vec{r}=(r,0,0)$