update on HERA-B results

Pietro Faccioli (Bologna University and INFN) *for the HERA-B Collaboration* QWG Workshop – October 18th, 2007

kinematics of J/ψ production

- nuclear effects in longitudinal and transverse momentum distributions
- polarization

under finalization but still preliminary

NEW, close to final

already published:
ψ'
J/ψ's from b
γ

fraction of J/ψ 's from χ_c

charmonium at HERA-B

- fixed-target proton-nucleus (C, Ti, W) at $\sqrt{s} = 41.6$ GeV
- negative $x_{\rm F}$ (-0.35 < $x_{\rm F}$ < 0.15)
- two partially independent analyses $(J/\psi \rightarrow e^+e^- \text{ or } \mu^+\mu^-)$

J/y and y' signals

full dilepton data sample (3 target materials)

nuclear effects: p_T ditribution

nuclear effects: x_F ditribution

both effects consistent with $A^{1/3}$ behaviour: energy loss?

how well is the result explained by theory?

theory - modification of the PDFs of nucleons bound in the nucleus

- initial/final state energy loss
- interaction with comovers produced together with $c\bar{c}$
- intrinsic charm components of beam/target nucleons
- absorption of $c\bar{c}$ inside the nucleus

theory

- modification of the PDFs of nucleons bound in the nucleus
- initial/final state energy loss (Gavin-Milana/Brodsky-Hoyer/Kharzeev-Satz)
- interaction with comovers produced together with $c\bar{c}$
- intrinsic charm components of beam/target nucleons
- absorption of $c\bar{c}$ inside the nucleus

- modification of the PDFs of nucleons bound in the nucleus
- initial/final state energy loss
- interaction with comovers produced together with $c\bar{c}$
- intrinsic charm components of beam/target nucleons
- absorption of $c\bar{c}$ inside the nucleus

- modification of the PDFs of nucleons bound in the nucleus
- initial/final state energy loss
- interaction with comovers produced together with $c\bar{c}$
- intrinsic charm components of beam/target nucleons
- absorption of $c\bar{c}$ inside the nucleus

- modification of the PDFs of nucleons bound in the nucleus
- initial/final state energy loss
- interaction with comovers produced together with $c\bar{c}$
- intrinsic charm components of beam/target nucleons
- absorption of $c\bar{c}$ inside the nucleus

theory

- modification of the PDFs of nucleons bound in the nucleus
- initial/final state energy loss (Gavin-Milana/Brodsky-Hoyer/Kharzeev-Satz)
- interaction with comovers produced together with $c\bar{c}$
- intrinsic charm components of beam/target nucleons
- absorption of $c\bar{c}$ inside the nucleus

theory

one possible combination of all effects (Vogt) (model parameters adjusted to E866 data)

missing ingredient in the calculations of final-state effects: precise knowledge of the feddown components of J/ψ production. Assumed (Vogt): 12% from ψ' , 30% from χ_c

energy loss ?

example: rough assumption $\langle \Delta p^{\text{LAB}}/p^{\text{LAB}} \rangle = -1.5\% \cdot A^{1/3}$ + residual, constant "absorption" $\Delta \alpha = -0.025$

increase at *negative* x_F due to p_T broadening – hypothesis: beam parton does not *increase* its energy with multiple scattering (bigger $k_{T_1} \rightarrow \text{smaller } k_{L_1}^{\text{lab}}$)

the $\sim A^{1/3}$ dependence of the effect seems to reproduce part of the difference between E789 and E866

J/w decay angular distribution: frames, angles, parameters

definitions of the polarization axis used by experiments:

- 1) Collins-Soper (CS): bisector between beam and (–)target directions in the J/ψ rest frame \rightarrow E866, NA3, etc.
- **2)** Gottfried-Jackson (GJ): beam direction in the J/ψ rest frame

 \rightarrow E615, E672-706, E771, E537, etc.

3) helicity (**HE**): J/ψ direction in the hadron (p-N) CM frame \rightarrow CDF, NA60, etc.

J/y polarization - UNDER FINALIZATION

1) we observe significant signals of anisotropy of the decay angular distribution in both channels and in all data samples: the J/ψ is *longitudinally* polarized

2) the results depend strongly on the **choice of the polarization frame**: the polarization is large in the CS frame, much attenuted in the helicity frame

J/w polarization

3) we observe a peculiar kinematical behaviour: the polarization increases with *decreasing p*_T. At p_T = 0 the results in the three frames converge, as they should, to the same value

4) there is a possible **dependence** on the target material (?)

- role of feeddown from χ_c (with non-flat nuclear dependence of $R_{\chi c}$)?
- other nuclear effects?
- statistical fluctuation + still unaccounted-for systematics?

J/w polarization

5) technical issue: polarized J/ψ 's are reconstructed with higher **efficiency** \rightarrow influence on p_T distributions and on all analyses which give results on – or normalize to – the J/ψ yield.

example: effect on the $p_{\rm T}$ -broadening results when the HERA-B MC is generated taking into account the measured polarization as a function of $p_{\rm T}$ and the possible difference between C and W polarizations (extreme case)

J/ ψ and χ_c polarizations are a non-negligible systematic uncertainty in the $R_{\chi c}$ result

J/w polarization: summary

rough interpretation of HERA-B results using toy MC (assuming only direct J/ψ production): a flat polarization generated in the "parton-parton frame" (polarization axis parallel to the relative velocity of the interacting partons) gives a decrease of |λ_θ| with increasing p_T in the observable frames, with the 'right' hierarchy (polarization can even change sign from one frame to the other!)

- in the HERA-B case the helicity frame, where the J/ψ momentum is assumed as the reference direction, turns out to be the worst one to observe polarization
- physical interpretation: the polarization is a consequence of the *production process* rather than an intrinsic property of the J/ψ mesons
- the HERA-B data indicate a *longitudinal* J/ψ polarization
- general, concerning polarization measurements:
 - they MUST be made in more than one frame. Unless it is zero, for purely geometrical reasons (smearing due to varying J/ψ kinematics) the polarization automatically *depends* on the frame of observation.
 - the observed hierarchy of frames contains a crucial physical information: how does polarization arise?

X_c production

selection:

$$\chi_{c} \longrightarrow J/\psi \gamma$$

$$\begin{cases} e^{+}e^{-} \\ \mu^{+}\mu^{-} \end{cases}$$

measurement:

• fraction of J/ψ 's from χ_c :

$$R_{\chi_{\mathbf{c}}} = rac{\sum \sigma(\chi_{\mathrm{c(i)}}
ightarrow \mathrm{J}/\psi\gamma)}{\sigma_{\mathrm{INCL}}(\mathrm{J}/\psi)}$$

σ(χ_{c1})/σ(χ_{c2})
 nuclear dependence

from the 2000 data, with **370 ± 74** χ_c 's ($\mu^+\mu^- + e^+e^-$): $R_{\chi c} = 0.32 \pm 0.06 \pm 0.04$ [Phys. Lett. B 561, 61 (2003)]

new data: $40 \times$ bigger χ_c statistics

$R(\chi_c)$ – NEW (ALMOST FINAL)

2002/2003 data, full statistics (15000 χ_c 's):

$$R(\chi_{c}) = \begin{cases} (18.0 \pm 2.5_{stat})\% & e^{+}e^{-} \\ (19.0 \pm 1.5_{stat})\% & \mu^{+}\mu^{-} \end{cases} \end{cases} \begin{cases} (18.8 \pm 1.3_{stat} + 2.0_{stat})\% & of the \\ produced J/\psi's come from \chi_{c} decays \end{cases}$$

hypotheses on $\chi_{\rm c}$ polarization move the central value within the range 18.3–23.2%

<u>X</u>_c production: nuclear suppression

Difference in suppression between χ_c and J/ψ :

 $<\Delta \alpha > = < \alpha(\chi_c) - \alpha(J/\psi) > = 0.05 \pm 0.04$

how many direct J/w's?

summary

■ last charmonium results $(J/\psi \text{ production kinematics and nuclear dependence, polarization, <math>\chi_c$) will be finalized and submitted for publication soon

• χ_c production:

- updated result confirms a smaller-than-"usual" $R_{\chi c}$ value: more than 70% of the J/ψ 's are produced directly
- probably, χ_c does not suffer a stronger nuclear suppression than J/ψ

nuclear dependence of J/ψ **production**:

- measured $p_{\rm T}$ broadening is in the trend of lower-energy results
- dependence on x_F cannot be explained easily. Reconsider the role of energy loss?

J/ψ polarization:

- it can be really measured only by looking at it from *more than one* frame of observation
- it turns out to arise along the direction of the colliding partons rather than along the flight direction of the *J*/ψ itself
- it turns out to be longitudinal