Charmonium Studies in $\gamma\gamma$ Collisions at Belle

Simon Eidelman

Budker Institute of Nuclear Physics, Novosibirsk, Russia

Outline 1. New charmonium states and decay modes

- 2. Learning more about charmonia
- 3. $\gamma\gamma \rightarrow \pi^0\pi^0$
- 4. Conclusions

Belle Geography

International Collaboration: Belle

BINP Chiba U. U. of Cincinnati Ewha Womans U. Fu-Jen Catholic U. U. of Giessen Gyeongsang Nat'l U. Hanyang U. U. of Hawaii Hiroshima Tech. IHEP, Beijing IHEP, Moscow

IHEP, Vienna ITEP Kanagawa U. KEK Korea U. Krakow Inst. of Nucl. Phys Kyoto U. Kyungpook Nat'l U. EPF Lausanne Jozef Stefan Inst. / U. of Ljubljana / U. of Maribor U. of Melbourne Nagoya U. Nara Women's U. National Central U. National Taiwan U. National United U. Nihon Dental College Niigata U. Nova Gorica Osaka U. Osaka City U. Panjab U. Peking U. Princeton U. Riken Saga U. USTC

14 countries, 55 institutes, ~400 collaborators

Shinshu U. Sungkyunkwan U. U. of Sydney Tata Institute Toho U. Tohoku U. Tohuku Gakuin U. U. of Tokyo Tokyo Inst. of Tech. Tokyo Inst. of Tech. Tokyo Wetropolitan U. Tokyo U. of Agri. and Tech. INFN Torino Toyama Nat'l College VPI Yonsei U.

Seoul National U.

Charmonium Production in $\gamma\gamma$ Collisions

- $\gamma\gamma$ is a good laboratory to study hadrons under clean conditions
- No (single, double)-tag = 0(1,2) scattered e^{\pm} detected
- For no-tag the allowed quantum numbers are $J^{PC} = 0^{-+}, 0^{++}, 2^{-+}, 2^{++}, \dots$
- Two-photon width $\Gamma_{\gamma\gamma}$ important parameter predicted by theory

How are $\gamma\gamma$ Events Selected

- No-tag, i.e. only products of the $\gamma\gamma$ collision detected
- Total momentum and energy restricted
- Good transverse momentum balance: $|\Sigma \vec{p}_t^*|$ restricted
- Particle identification criteria applied
- Background subtracted
- From the number of events \mathcal{G} obtained

$$\mathcal{G}(R \to X) \equiv \Gamma_{\gamma\gamma} \mathcal{B}(R \to X) \propto \frac{N_{\rm ev} m_R^2}{\int L dt \ dL_{\gamma\gamma}/dW_{\gamma\gamma} \ \epsilon}$$

Big spread of $\Gamma_{\gamma\gamma}(\chi_{c2})$, possible conflict of e^+e^- vs. $p\bar{p} \to \gamma\gamma$

$$\chi_{c2} \to J/\psi\gamma - \Pi I$$

C. Patrignani, PRD 64, 034017 (2001): Determinations of $\Gamma_{\gamma\gamma}$ suffer from strong correlations and different assumptions for the intermediate \mathcal{B} 's of the J/ψ , $\psi(2S)$ and χ_{cJ} Since 2002 correlations between different PDG quantities removed

Mode	PDG-2001	PDG-2007
$\mathcal{B}(J/\psi\gamma),\%$	13.5 ± 1.1	20.3 ± 1.0
$\mathcal{B}(\gamma\gamma), 10^{-4}$	1.42 ± 0.24	2.58 ± 0.19

$\Gamma_{\gamma\gamma}\mathcal{B}(J/\psi\gamma)$ for the χ_{c2}

Directly measured parameters should be quoted by authors!

Group	$\Gamma_{\gamma\gamma}(\chi_{c2})\mathcal{B}(\chi_{c2}\to J/\psi\gamma),\mathrm{eV}$
TPC-2 γ - 1993	$470\pm240\pm120$
CLEO - 1994	$150\pm42\pm36$
OPAL - 1998	$242\pm65\pm51$
L3 - 1999	$139\pm55\pm21$
Belle - 2002	$114 \pm 11 \pm 9$
CLEO - 2006	$111 \pm 12 \pm 9$
PDG-2007 (av.)	117 ± 10
PDG-2007 (fit)	108 ± 8

No conflict observed by comparing $\Gamma_{\gamma\gamma}(\chi_{c2})\mathcal{B}(\chi_{c2} \to J/\psi\gamma)$

Observation of $\chi_{c2}(2P)$

395 fb⁻¹ $64 \pm 18 \text{ ev.} (5.3\sigma)$ $M = 3929 \pm 5 \pm 2 \text{ MeV}$ $\Gamma = 29 \pm 10 \pm 2 \text{ MeV}$ $\Gamma_{\gamma\gamma} \mathcal{B}(D\bar{D}) = 0.18 \pm 0.05 \pm 0.03 \text{ keV}$ $\mathcal{B}(D^+D^-)/\mathcal{B}(D^0\bar{D}^0) = 0.74 \pm 0.43 \pm 0.16$ Angular analysis \Rightarrow spin=2

S. Uehara et al., PRL 96, 082003 (2006)

$$\gamma \gamma \to \chi_{c0(2)} \to \pi^+ \pi^-, K^+ K^-, K^0_S K^0_S$$

$\mathcal{G} \equiv \Gamma_{\gamma\gamma} \mathcal{B}, \, \mathrm{eV}$

Mode	χ_{c0}	χ_{c2}
$\pi^+\pi^-$	$15.1 \pm 2.1 \pm 2.3$	$0.76 \pm 0.14 \pm 0.11$
K^+K^-	$14.3 \pm 1.6 \pm 2.3$	$0.44 \pm 0.11 \pm 0.07$
$K^0_S K^0_S$	$7.00 \pm 0.65 \pm 0.71$	$0.31 \pm 0.05 \pm 0.03$

$R \equiv \mathcal{B}_1 / \mathcal{B}_2$

Modes	$R(\chi_{c0})$	$R(\chi_{c2})$
$K^0_S K^0_S / \pi^+ \pi^-$	$0.46 \pm 0.08 \pm 0.07$	$0.40 \pm 0.10 \pm 0.06$
$K^0_S K^0_S / K^+ K^-$	$0.49 \pm 0.07 \pm 0.08$	$0.70 \pm 0.21 \pm 0.12$

S.Eidelman, BINP

C.-C. Kuo et al., hep-ex/0609048 464 fb⁻¹

S.Eidelman, BINP

p.16/32

$$\gamma \gamma \to \eta_c \to p\bar{p}, \ \Lambda\bar{\Lambda}, \ \Sigma^0\bar{\Sigma}^0$$

Mode	$N_{ m ev}~(\sigma)$	${\cal G},{ m eV}$
$p\bar{p}$	$157 \pm 33 \ (5.3)$	$7.20 \pm 1.53^{+0.67}_{-0.75}$
$\Lambda \bar{\Lambda}$	$101.2 \pm 16.5 \ (6.6)$	$6.21 \pm 1.01^{+0.49}_{-0.52}$
$\Sigma^0 \bar{\Sigma}^0$	$36.1 \pm 9.3 \ (3.9)$	$9.80 \pm 2.50^{+0.98}_{-1.03}$

First evidence for $\eta_c \to \Sigma^0 \bar{\Sigma}^0$

H. Nakazawa, talk at PHOTON 07

S.Eidelman, BINP

p.18/32

$\eta_c \text{ and } \eta_c(2S) \text{ in } \gamma\gamma \to K^0_S K\pi - \Pi$

M, MeV	Group	η_c	$\eta_c(2S)$
	Belle	$2981.4 \pm 0.5 \pm 0.4$	$3633.7 \pm 2.3 \pm 1.9$
	PDG-07	2979.8 ± 1.2	3637.0 ± 4.0
	CLEO	$2981.8 \pm 1.3 \pm 1.5$	$3642.9 \pm 3.1 \pm 1.5$
	BaBar	$2982.5 \pm 1.1 \pm 0.9$	$3630.8 \pm 3.4 \pm 1.0$
Γ , MeV	Group	η_c	$\eta_c(2S)$
	Belle	$36.6 \pm 1.5 \pm 2.0$	$19.1\pm6.9\pm6.0$
	PDG-07	25.5 ± 3.4	14.0 ± 7.0
	CLEO	$24.8 \pm 3.4 \pm 3.5$	$6.3 \pm 12.4 \pm 4.0 \ (< 31)$
	BaBar	$34.3 \pm 2.3 \pm 0.9$	$17.0 \pm 8.3 \pm 2.5$
$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}$	Group	η_c	$\eta_c(2S)$
	Belle	$142 \pm 4 \pm 14$	$11.2 \pm 2.4 \pm 2.7$

Two-photon Width for the η_c and $\eta_c(2S)$

Assuming that $\mathcal{B}(\eta_c \to K^0_S K^{\pm} \pi^{\mp}) = \mathcal{B}(\eta_c(2S) \to K^0_S K^{\pm} \pi^{\mp})$

Group	$\Gamma_{\gamma\gamma}(\eta_c), \mathrm{keV}$	$\Gamma_{\gamma\gamma}(\eta_c(2S)), \mathrm{keV}$
Belle	$7.48 \pm 0.20 \pm 0.73$	$0.59 \pm 0.13 \pm 0.14$
PDG-07	$6.7^{+0.9}_{-0.8}$	_
CLEO	$7.7 \pm 0.4 \pm 0.5 \pm 2.2$	1.4 ± 0.6

η_c and $\eta_c(2S)$ in $\gamma\gamma \to K^0_S K\pi$ – Interference

		η_c	$\eta_c(2S)$
M, MeV	no int.	2981.4 ± 0.5	3633.7 ± 2.3
	$\phi > \pi$	2983.6 ± 0.7	3634.8 ± 3.2
	$\phi < \pi$	2983.5 ± 0.7	3634.8 ± 3.2
Γ, MeV	no int.	36.6 ± 1.5	19.1 ± 6.9
	$\phi > \pi$	37.2 ± 1.4	23.0 ± 6.7
	$\phi < \pi$	37.1 ± 1.4	23.0 ± 7.1
$\Gamma_{\gamma\gamma}, \mathrm{keV}$	no int.	7.48 ± 0.20	0.59 ± 0.13
	$\phi > \pi$	16.5 ± 0.4	2.16 ± 0.49
	$\phi < \pi$	1.99 ± 0.06	0.22 ± 0.05
ϕ	$\phi > \pi$	4.61 ± 0.02	$4.\overline{65\pm0.07}$
	$\phi < \pi$	1.71 ± 0.04	1.67 ± 0.22

The new $\Gamma_{\gamma\gamma}(\eta_c)\mathcal{B}$ values are a few times smaller than previously

For the $\eta_c(2S)$ UL's on $\Gamma_{\gamma\gamma}\mathcal{B}$ are 2–5 times smaller compared to the $\eta_c(1S)$

$$\gamma \gamma \to 2\pi^+ 2\pi^-, \ \pi^+ \pi^- K^+ K^-, \ 2K^+ 2K^- - V$$

$$\mathcal{G}(R \to X) = \mathcal{B}(R \to X) \frac{\mathcal{G}(R \to A)}{\mathcal{B}(R \to A)}$$

Mode	$\mathcal{G}_{ ext{Belle}}^{\eta_c}, ext{eV}$	$\mathcal{G}_{\mathrm{dir}}^{\eta_c},\mathrm{eV}$	$\mathcal{G}_{ ext{indir}}^{\eta_c}, ext{eV}$	$\mathcal{G}^{\eta_c'},\mathrm{eV}$
$\pi^+\pi^-\pi^+\pi^-$	$40.7 \pm 3.7 \pm 5.3$	$180\pm70\pm20$	83 ± 24	< 6.5
$K^+K^-\pi^+\pi^-$	$25.7 \pm 3.2 \pm 4.9$	210 ± 70	102 ± 30	< 5.0
$K^+K^-K^+K^-$	$5.6 \pm 1.1 \pm 1.6$	280 ± 70	11 ± 5	< 2.9

Significantly smaller $\mathcal{G}(\eta_c)$ than before! Upper limits for $\mathcal{G}(\eta_c(2S))$ 2–5 smaller than $\mathcal{G}(\eta_c)$

Two-body Decays of the η_c

Mode	$\mathcal{G}_{ ext{Belle}}^{\eta_c}, ext{eV}$	$\mathcal{G}_{\mathrm{dir}}^{\eta_c},\mathrm{eV}$	$\mathcal{G}_{ ext{indir}}^{\eta_c}, ext{eV}$
ho ho	< 39		130 ± 43
f_2f_2	$69\pm17\pm12$	—	74 ± 36
$K^*\bar{K}^*$	$32.4 \pm 4.2 \pm 5.8$	_	66 ± 22
$f_2 f_2'$	$49 \pm 9 \pm 13$	_	—
$\phi\phi$	$6.8 \pm 1.2 \pm 1.3$	_	19 ± 5

More precise and smaller two-body \mathcal{B} 's $\rho\rho$ not seen, first evidence for $f_2f'_2$

 $\gamma \gamma \to \chi_{c0(2)} \to 2\pi^+ 2\pi^-, \ \pi^+ \pi^- K^+ K^-, \ 2K^+ 2K^-$

χ_{c0} Mode	$\mathcal{G}_{ ext{Belle}}, ext{eV}$	$\mathcal{G}_{\mathrm{dir}},\mathrm{eV}$	$\mathcal{G}_{\mathrm{indir}},\mathrm{eV}$
$\pi^+\pi^-\pi^+\pi^-$	$44.7 \pm 3.6 \pm 4.9$	$75 \pm 13 \pm 8$	69 ± 13
$K^+K^-\pi^+\pi^-$	$38.8 \pm 3.7 \pm 4.7$	—	53 ± 12
$K^+K^-K^+K^-$	$7.9 \pm 1.3 \pm 1.1$	_	7.8 ± 1.6

χ_{c2} Mode	$\mathcal{G}_{ ext{Belle}}, ext{eV}$	$\mathcal{G}_{ m dir},{ m eV}$	$\mathcal{G}_{ ext{indir}}, ext{eV}$
$\pi^+\pi^-\pi^+\pi^-$	$5.01 \pm 0.44 \pm 0.55$	$6.4\pm1.8\pm0.8$	7.2 ± 1.2
$K^+K^-\pi^+\pi^-$	$4.42 \pm 0.42 \pm 0.53$	—	5.8 ± 2.1
$K^+K^-K^+K^-$	$1.10 \pm 0.21 \pm 0.15$	—	1.03 ± 0.18

Knowledge of the \mathcal{B} 's improved

More on χ_{c0} Decays

Mode	$\mathcal{G}_{ ext{Belle}}^{\eta_c}, ext{eV}$	$\mathcal{G}_{\mathrm{dir}}^{\eta_c},\mathrm{eV}$	$\mathcal{G}_{ ext{indir}}^{\eta_c}, ext{eV}$
$K^{*0}K^{-}\pi^{+}$ + c.c.	$16.7 \pm 6.1 \pm 3.0$	_	34 ± 13
ho ho	< 12	—	—
$K^*ar{K}^*$	< 18	_	5.1 ± 1.9
$\phi\phi$	$2.3\pm0.9\pm0.4$	—	2.7 ± 0.8

 $\rho\rho, K^*\bar{K}^*$ not seen, $\phi\phi$ confirmed

More on χ_{c2} Decays

Mode	$\mathcal{G}_{ ext{Belle}}^{\eta_c}, ext{eV}$	$\mathcal{G}_{\mathrm{dir}}^{\eta_c},\mathrm{eV}$	$\mathcal{G}_{ ext{indir}}^{\eta_c}, ext{eV}$
$ ho^0\pi^-\pi^+$	$3.2\pm1.9\pm0.5$	_	3.9 ± 2.3
ρρ	< 7.8	—	—
$K^* \bar{K}^*$	$2.4\pm0.5\pm0.8$	—	2.2 ± 0.5
$\phi\phi$	$0.58 \pm 0.18 \pm 0.16$	_	1.0 ± 0.3

 $\rho\rho$ not seen, $K^*\bar{K}^*$, $\phi\phi$ confirmed

95 fb⁻¹, 0.6 GeV < W < 4.0 GeV

R	$N_{ m ev}$	$\Gamma_{\gamma\gamma}\mathcal{B}, \mathrm{eV}$
χ_{c0}	35.3 ± 9.2	$8.4\pm2.2\pm0.8$
χ_{c2}	8.2 ± 6.4	$0.29 \pm 0.23 \pm 0.03$
		(< 0.75 at 90% CL)

 $\Gamma_{\gamma\gamma}\mathcal{B}(\pi^0\pi^0)\approx 0.5\Gamma_{\gamma\gamma}\mathcal{B}(\pi^+\pi^-)$

S. Uehara, talk at PHOTON 07

Conclusions

- A $\chi_{c2}(2P)$ candidate observed
- New decay modes are observed or first evidence shown $(\eta_c \to \Sigma^0 \overline{\Sigma}^0, f_2 f'_2)$
- $\eta_c(2P)$ decays to $K_S^0 K^{\pm} \pi^{\mp}$ only?
- Better understanding of the $\eta_c(1S)$, $\eta_c(2S)$, χ_{c0} , χ_{c2} from $\gamma\gamma$
- Interference effects seriously affect $\Gamma_{\gamma\gamma}$
- First promising results on $\gamma \gamma \rightarrow \pi^0 \pi^0$
- $\gamma\gamma$ is a very convenient laboratory to study various charmonia

Mass and Width of η_c , χ_{c0} and χ_{c2} from $\gamma\gamma \to \text{Four Tracks}$

	Belle $(4T)$	PDG-07
$M(\eta_c), \text{ MeV}$	$2986.1 \pm 1.0 \pm 2.5$	2979.8 ± 1.2
$\Gamma(\eta_c), \mathrm{MeV}$	$28.1 \pm 3.2 \pm 2.2$	26.5 ± 3.5
$M(\chi_{c0}), \mathrm{MeV}$	$3414.2 \pm 0.5 \pm 2.3$	3414.75 ± 0.35
$\Gamma(\chi_{c0}), {\rm MeV}$	$10.6\pm1.9\pm2.6$	10.4 ± 0.7
$M(\chi_{c2}), \mathrm{MeV}$	$3555.3 \pm 0.6 \pm 2.2$	3556.20 ± 0.09
$\Gamma(\chi_{c2}), \mathrm{MeV}$	—	2.05 ± 0.12