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Multipole Expansion

Theory of quarkonium transitions 
relies on the multipole expansion

r

k
Q̄ Q

In QCD the effective interaction 
for heavy quarks is

vNRQCD 

Λ
mQ

HQET

I. QUARKONIUM AND MULTIPOLE EXPANSIONS

LNRQCD = ψ†
(

iD0 +
D2

2mQ

)
ψ +

cF

2mQ
ψ†σ · gBψ + o(

1

m2
Q

)

+[ψ → iσ2χ∗, Aµ → −AT
µ ]

where

Llight = −1

4
F µν aF a

µν −
1

4
F µν Fµν +

∑

f

q̄f i qf , e+e−and

ψ is the Pauli spinor field that annihilates a heavy quark of mass m, flavor Q and electrical

charge eeQ, χ is the corresponding one that creates a heavy antiquark, and qf are the light

quark Dirac fields. The gauge fields with superscript “” are the electromagnetic fields,

the others are gluon fields, iD0 = i∂0 − gT aAa
0 − eeQA0 , iD = i∇ + gT aAa + eeQA,

[D×,E] = D × E − E ×D, Ei = F i0, Bi = −εijkF jk/2, Ei = F i0 and Bi = −εijkF jk /2

(ε123 = 1).

II. RADIATIVE TRANSITIONS

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ′ resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].

A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:

jµ ≡
∑

i=u,d,s

ji
µ +

∑

i=c,b,t

ji
µ (2)
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The heavy valence quarks (c, b, t) can described by the usual effective action:

LNRQCD = ψ†
{

iD0 +
D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g
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}
ψ (3)

where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.

For photon momentum small compared to the heavy quark masses, the form of the EM
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Applying Multipole Expansion to Hadronic Transitions 

S

O

g

For lowest order gluon emission: Gottfried

Yan

Voloshin

...

But single emission takes color singlet 
state (S) to unphysical octet state (O).

B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.

HI = iψ†′ r

2
· gE′

at
aψ′ +

cF

mQ
ψ†′sQ · gtaB′

aψ
′ + [Q− > Q̄] + · · ·

where

ψ′ = U−1ψ

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU
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where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.
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for dressed fields            ,

Double transitions dominate:
g

g
A

B

π

πE1-E1, E1-M1, M1-M1, E1-M2, ...            

Factorization:
E1-E1            

chiral methods Brown & Cahn,
...

Kuang & Yan

quark confining string

δab

electric polarizability 

model
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< B|rigtaGrjgtb|A > < ππ|Ei
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where

G = (EA −H0
NR)−1 =

∑

KL

|KL >< KL|
EA − EKL

(QQ̄ octet)

fAB ≡
∑

KL

∫
druB(r)ruKL(r)

∫
uKL(r)ruA(r)

EA − EKL + iε
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Lattice  

pNRQCD

HQET+ChET

Other Approaches

Model independent symmetry relations.
Incorporated in MPE approach.

Systematic Effective Lagrangian approach. 
Higher states an issue

See review:
Heavy Quarkonium 
Physics 
Cern-2005-005

(Vairo’s talk)

Dudek, Edwards, Richards 
[PR D73:074507 (2007)]

14

〈S(!pS)|jµ(0)|V (!pV , r)〉 = Ω−1(Q2)

(

E1(Q
2)

[

Ω(Q2)εµ(!pV , r) − ε(!pV , r).pS

(

pµ
V pV .pS − m2

V pµ
S

)

]

+
C1(Q2)
√

q2
mV ε(!pV , r).pS

[

pV .pS(pV + pS)µ − m2
Spµ

V − m2
V pµ

S

]

)

.

The Lorentz invariant matrix elements for the transition
χc0 → J/ψγ∗(Q2) are also given in the appendix:

M(rγ = ±; rψ = ∓) = E1(Q
2)

M(rγ = 0; rψ = 0) = −C1(Q
2).

Hence the analogue of (13) gives for the width at Q2 = 0,

Γ(χc0 → J/ψγ) = α
|!q|

m2
χc0

16

9

∣

∣Ê1(0)
∣

∣

2
,

where the lattice form-factor is again related to the phys-
ical one by E1(Q2) = 2 × 2

3e × Ê1(Q2).
The most recent measurement of this decay’s branch-

ing fraction comes from the CLEO collaboration[4], who
find, using the PDG total width to normalise: Γ(χc0 →
J/ψγ) = 204(31)keV. In addition to this we have the
PDG[3] average/fit to data obtained up to 2005 which
gives Γ(χc0 → J/ψγ) = 115(14)keV. The next PDG re-
port will likely contain the CLEO value in a new average
which will thus lie between these two values.

In figure 13 we display the Ê1(Q2) extracted from our
lattice simulations. Temporal vector current insertions
produce compatible results but with much larger error
bars and are not shown.

Our simulation data lies at Q2 '= 0, but since we are
primarily interested in the photopoint we require some
fit function to allow us to extrapolate back. In the light
of the success of forms motivated by the non-relativistic
quark model in previous sections we consider using a
function which resembles one that would be derived in
such a model. We opt to use a form

Ê1(Q
2) = Ê1(0)

(
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Q2

ρ2

)

exp

[
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Q2

16β2

]
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which has the gaussian behaviour used previously modi-
fied by a polynomial in Q2. In the simple quark model,
the Q2/ρ2 term could arise from relativistic corrections or
departures from gaussian wavefunction behaviour. Note
that this form is analytic for Q2 > 0 as we would expect
- singularities (as in the VMD case) will occur at Q2 < 0.

We do not include in the fit the points at Q2 < 0
- these data, corresponding to the case !pf = !pi where
Q2 = −(Ef −Ei)2, were extracted from correlators with
no plateau behaviour using the fitting method described
in section IV. It is therefore a rather non-trivial cross-
check that our fit function, constrained by points at Q2 !
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FIG. 13: χc0 → J/ψγ E1 transition form-factor. (a) full range
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The fit returns the following parameters:

atÊ1(0) = −0.137(12)

β = 542(35)MeV; ρ = 1.08(13)GeV

The longitudinal photon transition form-factor,
C1(Q2) can also be extracted from lattice three-point

Direct calculation - Extrapolate to Q2=0. 
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√

q2
mV ε(!pV , r).pS

[

pV .pS(pV + pS)µ − m2
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The Lorentz invariant matrix elements for the transition
χc0 → J/ψγ∗(Q2) are also given in the appendix:

M(rγ = ±; rψ = ∓) = E1(Q
2)

M(rγ = 0; rψ = 0) = −C1(Q
2).
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lattice simulations. Temporal vector current insertions
produce compatible results but with much larger error
bars and are not shown.

Our simulation data lies at Q2 '= 0, but since we are
primarily interested in the photopoint we require some
fit function to allow us to extrapolate back. In the light
of the success of forms motivated by the non-relativistic
quark model in previous sections we consider using a
function which resembles one that would be derived in
such a model. We opt to use a form
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Photon Transitions

A

B

γ

E1 Transitions

B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.

HI = iψ†′ r

2
· gE′

at
aψ′ +

cF

mQ
ψ†′sQ · gtaB′

aψ
′ + [Q− > Q̄] + · · ·

where

ψ′ = U−1ψ

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU

g2
E

8
< B|rigtaGrjgtb|A > < ππ|Ei

aE
i
b|0 >

where

G = (EA −H0
NR)−1 =

∑

KL

|KL >< KL|
EA − EKL

(QQ̄ octet)

fAB ≡
∑

KL

∫
druB(r)ruKL(r)

∫
uKL(r)ruA(r)

EA − EKL + iε

II. RADIATIVE TRANSITIONS

The spin averaged decay rate is given by

Γ(i
E1−→ f + γ) =

4αe2
Q

3
(2Jf + 1)SE

ifk
3|Eif |2 (1)

where eQ is the quark charge, k is the photon energy, the statistical factor SE
if = SE

fi is

SE
if = max (Li, Lf )
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Overlap

FIG. 1: E1 transitions in the narrow spin triplet b̄b states. For each S-P transition indicated

there are three individual transitions (one for each PJ state); while for transitions involving any

other pair of orbital angular momenta (P-D, D-F, F-G, ...) there are six individual transitions

(∆J = 0,±1).

An early choice for the potential was the Cornell Model [12, 30–32, 51]. Here the exchange

interaction was the time component of a vector with a Coulomb short range part −K/r plus

a linear r/a2 long range confining part. The Coulomb part was modified to agree with

perturbative QCD at short distance by Buchmuller and Tye[33, 34]. Other simple forms for

the potential, logarithmic[36, 38] and power law [37, 48], were also proposed.

In the NRQCD limit the the quark-antiquark interaction is spin independent, but includ-

ing relativistic corrections introduces dependency on the Lorentz structure of the potential.

Particular important is the vector versus scalar nature of the long-range confining interac-

tion. Many modern theoretical calculation assume a long range scalar confining potential[35]

or a linear combination of the form ηVS(r)+(1−η)VV (r) [27, 29, 40]. Moxhay and Rosner[41]

assumed an additional long range tensor force.

The second consideration is the extent of inclusion of relativistic corrections. Some calcu-

lations are essentially nonrelativistic. These calculations often include some finite size effects

(R3 of Eq. 22) by retaining the form for Eif given in Eq. 14[12, 30–32, 47, 51]. Other models

10

bb̄ spin triplets
.

The spin-flip radiative transition rate between an initial state (n2s+1!J), i, and a final

state (n′2s!+1SJ ′), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2Jf + 1)k3[Mif |]2 (3)

Eif =

∫
r2dr RniLi(r)rRnfLf

(r) (4)

For quarkonium states, Q1Q̄2, above the ground state but below threshold for strong

decay into a pair of heavy flavored mesons, electromagnetic transitions are often significant

decay modes. In fact, the first charmonium states not directly produced in e+e− collisions,

the χJ
c states, were discovered in photonic transitions of the ψ′ resonance. Even today, such

transitions continue to be used to observe new quarkonium states [1].

A. Effective Lagrangian

The theory of electromagnetic transitions between these quarkonium states is straightfor-

ward. Much of the terminology and techniques are familiar from the study EM transitions

in atomic and nuclear systems. The photon field Aµ
em couples to charged quarks through

the electromagnetic current:

jµ ≡
∑

i=u,d,s

ji
µ +

∑

i=c,b,t

ji
µ (5)

The heavy valence quarks (c, b, t) can described by the usual effective action:

LNRQCD = ψ†
{

iD0 +
D2

2m
+ cF g

σ ·B
2m

+ cD g
[D·,E]

8m2
+ icS g

σ · [D×,E]

8m2
+ . . .

}
ψ (6)

where the E and B fields are the chromoelectric and chomomagentic fields. Corrections to

the leading NR behaviour are determined by expansion in the quark and antiquark velocities.

For photon momentum small compared to the heavy quark masses, the form of the EM

interaction (in Coulomb gauge) is determined in the same way as the NRQCD action itself[2],

the leading order terms are:

j ·Aem = eQψ†
{
{D·,Aem}

2m
+ (1 + κQ)

σ ·Bem

2m
+ . . .

}
ψ (7)

Here κQ is the coefficient of a possible anomalous magnetic moment for the heavy quark.

The first term of Eq. 7 produces electric and the second magnetic transitions.

4

Sensitive to detailed dynamics 
for transitions involving radially
excited states
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FIG. 3 E1 dipole transition matrix elements for the charmonium decays 23S1 → 13PJ . The

horizontal bands indicate the experimental results. The circles designate nonrelativistic predictions

and the triangles relativistic predictions. Within these subsets the results are given in chronological

order of the publication date. The labels refer to C-Cornell Model (13), QR-Quigg Rosner, cc̄

ρ = 2 and bb̄ potentials (21), BT-Buchmüller Tye (89), GRR-Gupta Radford Repko (90), MB-

McClary Byers (43), MR-Moxhay Rosner (42), GOS-Grotch Owen Sebastian (34), GI-Godfrey

Isgur, calculated using the wavefunctions of Ref. (35), L-Lahde, DYN column (38), EFG-Ebert

Faustov Galkin (37).
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FIG. 16 E1 dipole transition matrix elements for the bottomonium decays 33S1 → 23PJ . The

labels are the same as in Fig. 15.
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FIG. 15 E1 dipole transition matrix elements for the bottomonium decays 23S1 → 13PJ . The

labels are the same as in Fig. 3 with the addition of two sets of predictions: KR-Kwong Rosner

(2), F-Fulcher (226).
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23S1->13PJ (cc) 
J=2 

J=1 

J=0 

33S1->23PJ (bb) 23S1->13PJ (bb) 

J=2 J=2 

J=1 J=1 

J=0 J=0 

EifS states -> P states

Generally good agreement with NRMPE  

Relativistic corrections 10%-20% effects 
in cc system.

Need better theoretical guidance. 

E.E., S. Godfrey, H. Mahlke and J. Rosner  [hep-ph/0701208]

Table 2: Experimental results for E1 transitions n3S1 to m3PJ . Total widths:
Γ(Ψ(2S)) = 337 ± 13, Γ(Υ(2S)) = 32.0 ± 2.6 and Γ(Υ(3S)) = 20.3 ± 1.8 (in keV) .

Transition k BR Rate |Eif |

i
E1
−→ f (MeV) % (keV) (GeV−1)

cc̄
23S1 13P2 127 9.33 ± 0.14 ± 0.61 31.4 ± 2.5 2.53 ± 0.10
23S1 13P1 171 9.07 ± 0.11 ± 0.54 30.6 ± 2.3 2.06 ± 0.08
23S1 13P0 261 9.22 ± 0.11 ± 0.46 31.1 ± 2.1 1.91 ± 0.06

bb̄
23S1 13P2 110.6 7.24 ± 0.11 ± 0.40 2.32 ± 0.23 1.69 ± 0.08
23S1 13P1 129.6 6.93 ± 0.12 ± 0.41 2.21 ± 0.23 1.68 ± 0.08
23S1 13P0 162.6 3.75 ± 0.12 ± 0.47 1.20 ± 0.18 1.52 ± 0.11
33S1 23P2 86.0 15.79 ± 0.17 ± 0.73 3.21 ± 0.37 2.90 ± 0.15
33S1 23P1 99.2 14.54 ± 0.18 ± 0.73 2.95 ± 0.34 2.90 ± 0.15
33S1 23P0 121.6 6.77 ± 0.20 ± 0.65 1.37 ± 0.18 2.52 ± 0.16
33S1 13P0 483 0.30 ± 0.04 ± 0.10 0.061 ± 0.023 0.067 ± 0.012

Table 3: Selected properties of quarkonium systems. Cornell potential model used
for calculations.

cc̄
State < |r| > (fm) < v2 >
J/ψ 0.32 0.26
χc(1P ) 0.57 0.24
ψ(2S) 0.70 0.29
ψ(3770) 0.78 0.28

bb̄
State < |r| > (fm) < v2 >
Υ(1S) 0.19 0.091
χb(1P ) 0.35 0.072
Υ(2S) 0.44 0.086
Υ(1D) 0.50 0.080
χb(2P ) 0.56 0.089
Υ(3S) 0.63 0.100
Υ(4S) 0.80 0.116

2
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1 Rates

Table 1: Cancellations in Eif by node regions.

bb̄ initial state node
Transition < 1 1 to 2 2 to 3 total
2S → 1P 0.07 −1.68 −1.61
3S → 2P 0.04 −0.12 −2.43 −2.51
3S → 1P 0.04 −0.63 0.65 0.06

1

33S1 -> 13PJ transition dynamically suppressed. 
Rate very sensitive to relativistic corrections.  

nP -> mS transitions. Generally good agreement 
with NR predictions. Again better theoretical  
control for relativistic corrections needed

TABLE XV Predicted (2) and measured (12) branching ratios for χbJ(2P ) = 23PJ radiative E1

decays.

Final Predicted B Measured B

Level state (%) (2) (%) (12)

23P0 γ + 1S 0.96 0.9 ± 0.6

γ + 2S 1.27 4.6 ± 2.1

23P1 γ + 1S 11.8 8.5 ± 1.3

γ + 2S 20.2 21 ± 4

23P2 γ + 1S 5.3 7.1 ± 1.0

γ + 2S 18.9 16.2 ± 2.4

knowledge of the χbJ(2P ) branching ratios, as summarized in Table XV.

The dipole matrix elements for Υ(2S) → γχbJ(1P ) and Υ(3S) → γχbJ(2P ) are shown

in Figs. 15 and 16, along with predictions of various models. The dipole matrix element

predictions are in generally good agreement with the observed values.

As already pointed out, the most notable exceptions are the matrix elements

〈33S1|r|13PJ〉. In the NR limit this overlap is less than 5% of any other S − P overlap,

and its suppression occurs for a broad range of potential shapes (227). This dynamical

accident makes these transition rates very sensitive to the details of wave functions and

relativistic corrections which are not known to this level of precision. This sensitivity is

shown most clearly looking at the signs of the matrix elements as well as their magnitudes.

The average experimental value for this matrix element is 〈33S1|r|13PJ〉 = 0.050 ± 0.006

GeV−1 (228). Taking the predictions of Ref. (35) for comparison, the average over J values

gives 0.052 GeV−1 which is in good agreement with the observed value. However, more

detailed scrutiny gives 0.097, 0.045, and –0.015 GeV−1 for J = 2, 1, and 0 matrix elements

respectively. Not only is there a large variation in the magnitudes but the sign also changes,

highlighting how sensitive the results for this particular transition are to details of the model

due to delicate cancellations in the integral.

The branching ratios can also be used to measure the ratios of various E1 matrix elements

which can then be compared to potential model predictions. CLEO (228) obtained the
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FIG. 4 E1 dipole transition matrix elements for the charmonium decays 13PJ → 13S1. Labels are

as in Fig. 3.

ratios a2 for these decays are

a2(χc1) = Eγ1
(1 + κc)/(4mc) , (26)

a2(χc2) = (3/
√

5)Eγ2
(1 + κc)/(4mc) , (27)

25

13PJ ->13S1 (cc) 
J=2 

J=1 

J=0 

Exp 
GI Model 
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ψ(3770)-> 13PJ transitions:                                               
Can study relativistic effects including 
coupling to decay channels.  

ψ’(2S) -> 13PJ -> J/ψ transitions:            
Can study size of higher multipole 
terms M2 and E3. 

TABLE V: M2 and E3 multipole amplitudes for radiative transitions involving χc states. The

values of X and Y are model dependent and are defined in the text. Note X = 0 if no S-D mixing.

χcJ → J/ψ + γ

J theory E835 PDG

2 a2 ≈ −
√

5
3

k
4mc

(1 + κc) −0.093+0.039
−0.041 ± 0.006 −0.140± 0.006

2 a3 ≈ 0 0.020+0.055
−0.044 ± 0.009 0.011+0.041

−0.033

1 a2 ≈ − k
4mc

(1 + κc) 0.002± 0.032± 0.004 −0.002+0.008
−0.017

J ψ ′ → χcJ + γ theory

2 a2 ≈ −
√

3
2
√

10
k

mc
[(1 + κc)(1 +

√
2

5 X)− i1
5X]/[1− 1

5
√

2
X]

2 a3 ≈ −12
√

2
175

k
mc

X[1 + 3
8Y ]/[1− 1

5
√

2
X]

1 a2 ≈ − k
4mc

[(1 + κc)(1 + 2
√

2
5 X) + i 3

10X]/[1 + 1√
2
X]

12

TABLE V: Our measurements of the photon transitions widths (statistical and systematic errors)

compared to theoretical predictions. The J =0 measurement comes from this analysis. The J =2
upper limit comes from Ref.[5]. The J = 1 measurement comes from the combination of this
analysis and of the result in Ref.[5].

Γ(ψ(3770) → γχcJ) in keV
J = 2 J = 1 J = 0

Our results < 21 70 ± 17 172 ± 30

Rosner (non-relativistic) [7] 24 ± 4 73 ± 9 523 ± 12
Ding-Qin-Chao [6]

non-relativistic 3.6 95 312

relativistic 3.0 72 199
Eichten-Lane-Quigg [8]

non-relativistic 3.2 183 254
with coupled-channels corrections 3.9 59 225
Barnes-Godfrey-Swanson [9]

non-relativistic 4.9 125 403
relativistic 3.3 77 213

predictions.
The theoretical predictions are based on potential model calculations [13] of the electric

dipole matrix element <13PJ |r|13D1 >:

ΓJ =
4

3
e2

QαE3
γCJ <13PJ |r|13D1 >2,

where eQ is the c quark charge and α is the fine structure constant. The spin factors CJ

are equal to 2/9, 1/6 and 1/90 for J = 0, 1 and 2, respectively [15]. The phase-space
factor (E3

γ) also favors the J = 0 transition. Together, the spin and phase-space factors
predict enhancement of the J = 0 width by a factor of ∼ 3.2 and ∼ 85 over J = 1 and
J = 2, respectively. In the non-relativistic limit, the matrix element is independent of J .
The measured ratios of the widths, Γ0/Γ1 = 2.5 ± 0.6 and Γ0/Γ2 > 8 (90% C.L.), are
consistent with these crude predictions, therefore, providing further evidence that ψ(3770)
is predominantly a 13D1 state. A small admixture of 23S1 wave, necessary to explain the
observed Γee(ψ(3770)), is expected to increase Γ0 and Γ2 while making Γ1 smaller [6, 7]. The
large experimental and theoretical uncertainties in ΓJ make testing of the mixing hypothesis
via radiative transitions difficult.

As evident from Table V, the naive non-relativistic calculations tend to overestimate
absolute values of the transition rates. Relativistic [6, 9] or coupled-channel [8] corrections
are necessary for quantitative agreement with the data. The latter is not surprising since
non-relativistic calculations also overestimate ψ(2S) → γχcJ transition rates [16].

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
luminosity and running conditions. This work was supported by the A.P. Sloan Foundation,
the National Science Foundation, the U.S. Department of Energy, and the Natural Sciences

10

CLEO
 [PR D74 (2006) 031106]



E. Eichten        QWG -- 5th International Workshop on Heavy Quarkonia       DESY October 18, 2007   

M1 Transitions - S States

A. Model predictions

Using the same (NR) model as used for the E1 transitions ( A nonrelativistic treatment

except for finite size corrections and κQ = 0) the M1 transition rates and overlap matrix

elementsM for c̄c and b̄b S state systems is shown in Table III

Numerous papers have considered these M1 transitions including full relativistic correc-

tions[? ? ? ? ? ? ? ].

The considerations for M1 transitions is particularly complicated. In addition to the

usual issues associated with the form of the long range potential there is the unknown

value for the anomalous magnetic moment for the quark (κQ). Furthermore, the results are

dependent explicitly on the quark mass and other details of the potential. (See Eqs. ??.)

For the models (RA) and (RB) used Eventually these uncertainties will be reduced by lattice

calculations of the J/ψ to ηc transition rate.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

(1 + κc)[1 + o(v2)] (7)

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

[
1 + CF

αs(Mj/ψ/2)

π
κc)i +

2

[
3(CF αs(pJ/ψ))2

]
(8)

B. Comparison with experiment

C. Comparison with experiment

M1 transitions have only been observed in the c̄c system. The allowed transitions in the

c̄c system below threshold are shown in Fig. 1. The transitions within the 1P system are

tiny (≈ 1 eV). Only the J/ψ → ηc and ψ ′ → ηc are observed experimentally [? ].

For the b̄b system CLEO [? ] sees no evidence for the hindered M1 transition Υ(3S) →

ηb(1S). The 90% cl upper bound on the branching ratio varies from 4−6×10−4 depending on

the mass splitting. For the expected splitting ≈ 910MeV the bound is 5.3× 10−4[? ]. This

rules out a number of older models[? ? ]. A comparision of the experiment results with a

variety of more modern models is shown in Table IV. For each model the assumptions for the

mixture of scalar and vector confinement and the value of κQ is exhibited explicitly. For the

model of Lahde[? ] the results are also shown without including the exchange term (NEX).

7

TABLE I: Experimental results for E1 transitions n3S1 to m3PJ . The S state widths (in keV) used

are: Γ(Ψ(2S)) = 337± 13, Γ(Υ(2S)) = 29.0± 1.6 and Γ(Υ(3S) = 20.3± 2.1 .

Transition k BR Rate |Eif |

i
E1−→ f ( MeV) % ( keV) ( GeV−1)

cc̄

23S1 13P2 127 9.33± 0.14± 0.61 31.4± 2.5 2.53± 0.10

23S1 13P1 171 9.07± 0.11± 0.54 30.6± 2.3 2.06± 0.08

23S1 13P0 261 9.22± 0.11± 0.46 31.1± 2.1 1.91± 0.06

bb̄

23S1 13P2 110.6 7.24± 0.11± 0.40 2.10± 0.17 1.61± 0.06

23S1 13P1 129.6 6.93± 0.12± 0.41 2.01± 0.17 1.60± 0.07

23S1 13P0 162.6 3.75± 0.12± 0.47 1.09± 0.15 1.45± 0.10

33S1 23P2 86.0 15.79± 0.17± 0.73 3.21± 0.37 2.90± 0.16

33S1 23P1 99.2 14.54± 0.18± 0.73 2.95± 0.34 2.90± 0.16

33S1 23P0 121.6 6.77± 0.20± 0.65 1.37± 0.20 2.52± 0.17

33S1 13P0 483 0.30± 0.04± 0.10 0.061± 0.023 0.067± 0.011

where eQ is the quark charge, k is the photon energy, the statistical factor SE
if = SE

fi is

SE
if = max (Li, Lf )





Ji 1 Jf

Lf S Li






2

. (2)

.

The spin-flip radiative transition rate between an initial state (n2s+1!J), i, and a final

state (n′2s!+1SJ ′), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2Jf + 1)k3[Mif |]2 (3)

Mif =

∫
r2dr RniLi(r)j0(

rk

2
)RnfLf

(r) (4)

The widths (in keV) of the cc̄ and bs̄ S states assumed are: ‘Γ(Ψ(2S)) = 337 ± 13,

Γ(Υ(2S)) = 29.0± 1.6 and Γ(Υ(3S) = 20.3± 2.1 .
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k = 0 : Mif = 1 ni = nf ; Li = Lf

= 0 otherwise

Dudek, Edwards, Richards 
[PR D73:074507 (2007)]

Basics  

LQCD  

pNRQCD

  Brambilla, Jia & Vairo 
[PR D73:054005 (2006)]

 Model independent - completely accessible by perturbation theory to o(v2)

No large anomalous magnetic moment 
No scalar long range interaction 

A. Model predictions

Using the same (NR) model as used for the E1 transitions ( A nonrelativistic treatment

except for finite size corrections and κQ = 0) the M1 transition rates and overlap matrix

elementsM for c̄c and b̄b S state systems is shown in Table III

Numerous papers have considered these M1 transitions including full relativistic correc-

tions[? ? ? ? ? ? ? ].

The considerations for M1 transitions is particularly complicated. In addition to the

usual issues associated with the form of the long range potential there is the unknown

value for the anomalous magnetic moment for the quark (κQ). Furthermore, the results are

dependent explicitly on the quark mass and other details of the potential. (See Eqs. ??.)

For the models (RA) and (RB) used Eventually these uncertainties will be reduced by lattice

calculations of the J/ψ to ηc transition rate.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

(1 + κc)[1 + o(v2)] (7)

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

[
1 + CF

αs(Mj/ψ/2)

π
+

2

3
(CF αs(pJ/ψ))2

]
(8)

B. Comparison with experiment

C. Comparison with experiment

M1 transitions have only been observed in the c̄c system. The allowed transitions in the

c̄c system below threshold are shown in Fig. 1. The transitions within the 1P system are

tiny (≈ 1 eV). Only the J/ψ → ηc and ψ ′ → ηc are observed experimentally [? ].

For the b̄b system CLEO [? ] sees no evidence for the hindered M1 transition Υ(3S) →

ηb(1S). The 90% cl upper bound on the branching ratio varies from 4−6×10−4 depending on

the mass splitting. For the expected splitting ≈ 910MeV the bound is 5.3× 10−4[? ]. This

rules out a number of older models[? ? ]. A comparision of the experiment results with a

variety of more modern models is shown in Table IV. For each model the assumptions for the

mixture of scalar and vector confinement and the value of κQ is exhibited explicitly. For the

model of Lahde[? ] the results are also shown without including the exchange term (NEX).
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1.19± 0.33 keV

J/ψ → ηcγ

Up to order v2 the transition J/ψ → ηcγ is completely accessible by perturbation theory.

Γ(J/ψ → ηcγ) =
16

3
αe2

c

k3
γ

M2
J/ψ

»

1 + CF
αs(MJ/ψ/2)

π
−

2

3
(CF αs(pJ/ψ))2

–

The normalization scale for the αs inherited from κc is the charm mass

(αs(MJ/ψ/2) ≈ 0.35 ∼ v2), and for the αs, which comes from the Coulomb potential, is

the typical momentum transfer pJ/ψ ≈ mCF αs(pJ/ψ)/2 ≈ 0.8 GeV ∼ mv.

Γ(J/ψ → ηcγ) = (1.5 ± 1.0) keV.

 Exp [CUSB] 

j0 = 1 - (kr)2/24 + ..., so in NR limit
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Hindered M1 transitions  
ϒ(3S) -> ηb and ϒ(2S) -> ηb 

Phenomenological model results vary 
greatly due to poorly understood 
relativistic corrections. 

pNRQCD expectation

QwG Workshop@BNL  JUN/2006Hajime Muramatsu 7

Search for !(2,3S) " #$b(1S)

• Hindered M1 transition:

• But E# ~911 (604) MeV from !(3S) (!(2S)) " #$b(1S) with

M($b)~9400 MeV/c2.

• CLEO has already set ULs (90%CL) on these BR’s (PRL94,032001)
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Hadronic Transitions

g

g
A

B

π

π

Model: Kuang & Yan 
[PR D24, 2874 (1981)]

αEE
AB

Hadronize

B. hadronic transitions

Applying the multipole expansion to hadronic transitions. First suggested by Gottfried

and proven by Yan.

HI = iψ†′ r

2
· gE′

at
aψ′ +

cF

mQ
ψ†′sQ · gtaB′

aψ
′ + [Q− > Q̄] + · · ·

where

ψ′ = U−1ψ

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU

taA′µ
a = U−1taAµ

aU −
i

g
U−1∂µU

g2
E

16
< B|rigtaGrjgtb|A > < παπβ|Ei

aE
j

b|0 >

Mgg
if =

1

16
< B|riξ

aGrjξ
a|A >

g2
E

6
< παπβ|Tr(EiE

j
)|0 >

where

G = (EA −H0
NR)−1 =

∑

KL

|KL >< KL|
EA − EKL

(QQ̄ octet)

fAB ≡
∑

KL

∫
r2drRB(r)rRKL(r)

∫
r2drRKL(r)rRA(r)

EA − EKL + iε

II. RADIATIVE TRANSITIONS

The spin averaged decay rate is given by

Γ(i
E1−→ f + γ) =

4αe2
Q

3
(2Jf + 1)SE

ifk
3|Eif |2 (1)

3

state (n′2s!+1SJ ′), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2J ′ + 1)k3SM
if [Mif |]2 (8)

where the statistical factor SM
if = SM

fi is

SM
if = 6(2s + 1)(2s′ + 1)





J 1 J ′

s′ # s






2 



1 1

2
1
2

1
2 s′ s






2

. (9)

For l = 0 transitions, SM
if = 1.

V. HADRONIC TRANSITONS

g2
E

6
〈πα(q1)πβ(q2)|Ea

kEa
l |0〉 =

δαβ√
(2ω1)(2ω2)

[
C1δklq

µ
1 q2µ + C2

(
q1kq2l + q1lq2k −

2

3
δkl (q1 · q2)

)]

where C1 and C2 are two unknown constants.

Very recently, CLEO-c also detected the channel ψ(3770)→J/ψ + π+ + π− with higher

precision, and the measured branching ratio is [29]

B(ψ(3770)→J/ψ + π+ + π−) = (0.214± 0.025± 0.022)%. (10)

With the ψ(3770) total width (??), the partial width is

Γ(ψ(3770)→J/ψ + π+ + π−) = 50.5± 16.9 keV. (11)

We can also determine C2/C1 from (12) and (??), and the result is

C2/C1 = 1.52+0.35
−0.45. (12)

This is consistent with the value (??) determined from the BES data, but with higher

precision.

An alternative way of calculating this kind of transition rate taking the approach to the

H factor proposed by Ref. [4] was carried out in Ref. [22]. The so obtained transition rate

is smaller than the above theoretical prediction by two orders of magnitude. So it strongly

disagrees with (??) and (12). Therefore the approach given in Ref. [4] is ruled out by the

BES and CLEO-c experiments.

9

S state -> S state

Phase Space Overlap - Vibrating String Model

Γ(n3
IS1→n3

F S1 π π) = |C1|2G|f 111
nI0nF 0|2, (13)

where the phase-space factor G is [7]

G ≡ 3

4

MΦF

MΦI

π3

∫
K

√

1− 4m2
π

M2
ππ

(M2
ππ − 2m2

π)2 dM2
ππ, (14)

dΓ ∼ K

√

1− 4m2
π

M2
ππ

(M2
ππ − 2m2

π)2 dM2
ππ, (15)

with

K ≡
√

(MA + MB)2 −M2
ππ

√
(MA −MB)2 −M2

ππ

2MA
, (16)

and

fLPIPF
nI lInF lF

≡
∑

K

∫
RF (r)rPF R∗

KL(r)r2dr
∫

R∗
KL(r′)r′PIRI(r′)r′2dr′

MI − EKL
, (17)

VI. NEW STATES

VII. SUMMARY
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Two pion transitions

D-waveS-wave

Factorization
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FIG. 6. Fits to the mππ distribution. The points are the data corrected for efficiency, and

the curves are the fit results. The smooth curve is the Novikov-Shifman model (Eqn. 9). The
long-dashed and short-dashed curves are the T. M. Yan model with and without higher order

corrections, and the dash-dot curve is the Voloshin-Zakarov model (Eqn. 13). Three of the models
are nearly indistinguishable. The T. M. Yan model without higher order corrections is slightly
different. The results are given in Tables IV and VI.
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FIG. 7. Fits to cos θ∗π distribution. The results are given in Tables IV and VI. The points are

the data corrected for efficiency, and the curve is the fit result using Eqn. 10.

0.8 using Eqn. 10 [20], we obtain the results shown in Fig. 7. The fit yields κ = 0.210±0.027
with a χ2/DOF = 26/40.

We have also fit the joint cos θ∗π and mππ distribution (Eqn. 8). This approach does not
require integrating over one of the variables and is sensitive to any cos θ∗π - mππ correlation.
Using this approach, we obtain a κ = 0.183 ± 0.002 and a χ2/DOF = 1618/1482. The

13

BES ψ′ → J/ψ + π+π−



E. Eichten        QWG -- 5th International Workshop on Heavy Quarkonia       DESY October 18, 2007   
FIG. 1: The decay process under study and the main background process, denoted in the text as

“ππ γ γ”. Note that these have the same γ2, so that the energy of this photon is not a distinguishing
observable.

denoted E1, and the mass recoiling against the pion pair, Mrec, to define our signal. In
calculating Mrec we also used the four vector of γ1 so that Mrec actually represents the mass
difference of the 2P and 1P states; i.e.,

Mrec ≡
√

(P3S − Pγ1)2 −
√

(P3S − Pγ1 − Pπ1 − Pπ2)2 , (1)

with P denoting the four-vector momentum. In the second, we increased our efficiency
by only reconstructing one of the pions (a “one-pion” analysis) and used as variables the
missing mass of the event and E1.

II. THE CHANNEL χ′
b → π+π−χb

In event selection for our study of χ′
b → π+π−χb we required four well-measured primary

charged tracks, two of which had to have high momenta (in excess of 3.75 GeV/c) and
had to have calorimeter and momentum information consistent with being either e+e− or
µ+µ−.1 These two putative lepton tracks also had to have an invariant mass within 300
MeV of the Υ(1S) mass, which is a very loose requirement (∼ ±5σ). The other track(s) had
to have measured momentum 50 < p < 750 MeV/c and have a dip angle with respect to
the beam axis corresponding to | cos θ| < 0.93. To reduce QED backgrounds and facilitate
comparison to other, established channels, we made additional, highly efficient requirements

1 More details on the charged pion analyses are available in the MS thesis of K. M. Weaver, Observation

of χ′
b
→ π+π−χb, Cornell University, 2005 (unpublished).

5

P state -> P state

Assume only S wave term =>  J = J’
result of

Γππ = (0.83 ± 0.22 ± 0.08 ± 0.19) keV ,

with the uncertainties being statistical, systematics from our analyses, and systematics from
outside sources. This result for χ′

b → ππχb can be compared to values derived from the
PDG[12] of Γ(Υ(3S) → ππΥ(2S)) = (1.3±0.2) keV for a process with somewhat less Q and
Γ(Υ(2S)→ ππΥ(1S)) = (12 ± 2) keV for a process with considerably more Q. Our result
is consistent with the theoretical expectations of Kuang and Yan[20], who have calculated
Γππ = 0.4 keV.

In summary, we have searched the CLEO III data at the Υ(3S) resonance for the decay
χ′

b → ππχb using four different approaches. The combined probability that the signal process
is absent is small, leading to the conclusion that the null hypothesis cannot be substantiated.
Under the assumption of no D-wave contributions we obtain a partial width for each of the
J ′ = J = 1 and J ′ = J = 2 transitions of Γππ = (0.83 ± 0.22 ± 0.08 ± 0.19) keV.
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2PJ -> 1PJ’ + 2π - First observation[CLEO] 
Results agree with Kuang and Yan (1988)  

FIG. 4: Distributions in π+π−"+"− events of the π+π− mass (left) and polar angle (right) of the

positively charged lepton from data (open circles) and MC (solid line line).
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CLEO

state (n′2s!+1SJ ′), f , is:

Γ(i
M1−→ f + γ) =

4αe2
Q

3m2
Q

(2J ′ + 1)k3SM
if [Mif |]2 (8)

where the statistical factor SM
if = SM

fi is

SM
if = 6(2s + 1)(2s′ + 1)





J 1 J ′

s′ # s






2 



1 1

2
1
2

1
2 s′ s






2

. (9)

For l = 0 transitions, SM
if = 1.

V. HADRONIC TRANSITONS

g2
E

6
〈πα(q1)πβ(q2)|Ea

kEa
l |0〉 =

δαβ√
(2ω1)(2ω2)

[
C1δklq

µ
1 q2µ + C2

(
q1kq2l + q1lq2k −

2

3
δkl (q1 · q2)

)]

where C1 and C2 are two unknown constants.

Very recently, CLEO-c also detected the channel ψ(3770)→J/ψ + π+ + π− with higher

precision, and the measured branching ratio is [29]

B(ψ(3770)→J/ψ + π+ + π−) = (0.214± 0.025± 0.022)%. (10)

With the ψ(3770) total width (??), the partial width is

Γ(ψ(3770)→J/ψ + π+ + π−) = 50.5± 16.9 keV. (11)

We can also determine C2/C1 from (12) and (??), and the result is

C2/C1 = 1.52+0.35
−0.45. (12)

This is consistent with the value (??) determined from the BES data, but with higher

precision.

An alternative way of calculating this kind of transition rate taking the approach to the

H factor proposed by Ref. [4] was carried out in Ref. [22]. The so obtained transition rate

is smaller than the above theoretical prediction by two orders of magnitude. So it strongly

disagrees with (??) and (12). Therefore the approach given in Ref. [4] is ruled out by the

BES and CLEO-c experiments.

9

Determines

D state -> S state

CLEO [PR D73, 012003 (2006)]
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Table 4: Two pion transitions observed in the cc̄ system.

Transition m(max)
ππ Branching Fraction Partial Width 1

i → f + X (MeV) (%) (keV)
ψ(2S) → J/ψ π+π− 589 33.54 ± 0.14 ± 1.10 113.0 ± 8.4

π0π0 16.52 ± 0.14 ± 0.58 55.7 ± 4.1
ψ(3770) → J/ψ π+π− 676 (1.89 ± 0.20 ± 0.20) × 10−1 43.5 ± 11.5

π0π0 (0.80 ± 0.25 ± 0.16) × 10−1 18.4 ± 9.8

Table 5: Two pion transitions observed in the bb̄ system.

Transition m(max)
ππ Branching Fraction Partial Width 2

i → f + X (MeV) (%) (keV)
Υ(2S) → Υ(1S) π+π− 563 18.8 ± 0.6 6.0 ± 0.5

π0π0 9.0 ± 0.8 2.6 ± 0.2
Υ(3S) → Υ(1S) π+π− 895 4.48 ± 0.21 0.77 ± 0.06

π0π0 2.06 ± 0.28 0.36 ± 0.06
Υ(3S) → Υ(2S) π+π− 332 2.8 ± 0.6 0.48 ± 0.12

π0π0 2.00 ± 0.32 0.35 ± 0.07
Υ(4S) → Υ(1S) π+π− 1120 (0.90 ± 0.15) × 10−2 1.8 ± 0.4
Υ(4S) → Υ(2S) π+π− 557 (0.83 ± 0.16) × 10−2 1.7 ± 0.5
χb2(2P ) → χb2(1P ) π+π− 356 (6.0 ± 2.1) × 10−1 0.83 ± 0.32
χb1(2P ) → χb1(1P ) π+π− 363 (8.6 ± 3.1) × 10−1 0.83 ± 0.32

1Total widths: Γ(ψ(2S)) = 337 ± 13 keV and Γ(ψ(3770)) = 23.0 ± 2.7 MeV
2Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±

13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.
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4

=> |C1| = 8.87x10-3 

(BT potential)
=> |C2|/|C1| = 1.52  +0.35-0.45  

 Rescaled Kuang &Yan model

} 9.4  
} 1.4  

} 0.6  

0.6
0.6  

Model generally in good agreement with experiment
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M!! distributions

!(2S) and !(3S)!!(1S) are well described by Brown-Cahn and

Moxhay models. !"consistent with CLEO measurement(PRD58

052004, PRD49 40).

Belle
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M!! distributions(cont.)

!(4S)!!(1S) is consistent with Brown-Cahn model.

Belle

6

TABLE I: Number of signal events, significance, efficiency
and measured values of the products of branching ratios for
the 4S → nS transitions. The error on the efficiency is
obtained adding in quadrature the systematic uncertainties.
The errors on the product branching fractions are statistical
and systematic respectively

Transition Nsig significance εsel B4S→nS × BnS→µµ

(%) (10−6)

4S → 1S 167±19 10.0σ 32.5±3.9 2.23±0.25±0.27

4S → 2S 97±15 7.3σ 24.9±3.0 1.69±0.26±0.20

QCD multipole model [2]. The second largest source
of systematic uncertainty is due to uncertainty in the
track reconstruction efficiency, which is 1.3% per track,
resulting in a 5.2% uncertainty in εsel. The systematic
uncertainties associated with the event selection (4.3%)
and muon identification (1.4%) criteria are estimated by
comparing the efficiency of each selection criterion deter-
mined from MC samples to the corresponding efficiency
measured with the ISR control samples. We have also
considered the systematic uncertainties due to the choice
of signal and background parametrizations by using dif-
ferent functions or different parameters, and the system-
atic uncertainties due to the choice of the fit range. The
contributions from these sources are negligible in com-
parison to the previously mentioned sources.

The product branching fraction (Table I) is determined
from the π+π−µ+µ− sample using:

B
(

Υ (4S) → π+π−Υ (nS)
)

×

B
(

Υ (nS) → µ+µ−
)

=
Nsig

εsel N(4S)
, (1)

where N(4S) = (230.0 ± 2.5) × 106 is the total number
of Υ (4S) mesons produced.

The event yields observed for 3S → nS and 2S → 1S
are compatible with PDG-averaged values of the ISR
cross section and branching fractions for those reso-
nances. The number of signal events observed in the
π+π−e+e− final state is compatible with the branch-
ing fractions we measure in the π+π−µ+µ− sample. No
4S → nS signal is observed for π+π−µ+µ− or π+π−e+e−

final states in the data collected at center of mass energies
40 MeV below the Υ (4S) resonance.

The dipion invariant mass distribution, Mπ+π−

(Fig. 3), is determined by fitting the ∆M distribution
in equal intervals of Mπ+π− , and dividing the number
of signal events in each interval by the corresponding
selection efficiency. The measured distribution for the
4S → 1S transition has a shape similar to the prediction
of the Kuang-Yan model [2]. This model provides a good
description of the observed distributions for 2S → 1S,
3S → 2S, and also ψ(2S) → π+π−J/ψ, but fails to de-
scribe the 3S → 1S distribution. Our measured distribu-

)
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FIG. 3: The efficiency-corrected Mπ+π− distribution for
4S → 1S transition (left) and 4S → 2S transition (right).
The solid line shows the distribution predicted in Ref. [2]. The
dotted histogram shows the selection efficiency in each bin.
The experimental resolution in Mπ+π− is less than 5 MeV/c2,
much smaller than the bin size.

tion for the 4S → 2S transition has a marked enhance-
ment at low Mπ+π− that is incompatible with this model.

The 4S → nS branching ratios and partial widths
can be derived using the world average values for
B (Υ (nS) → µ+µ−) [10] and a recent BABAR measure-
ment of Γ(Υ (4S)) [13]. We obtain

B (Υ (4S) → π+π−Υ (1S)) = (0.90 ± 0.15)× 10−4,

B (Υ (4S) → π+π−Υ (2S)) = (1.29 ± 0.32)× 10−4,

Γ(Υ (4S) → π+π−Υ (1S)) = (1.8 ± 0.4) keV,

and

Γ(Υ (4S) → π+π−Υ (2S)) = (2.7 ± 0.8) keV.

We add in quadrature the statistical and systematic un-
certainties on the derived quantities. With the most
recent CLEO measurement of B (Υ (2S) → µ+µ−) [14],
we obtain smaller values: B (Υ (4S) → π+π−Υ (2S)) =
(0.83 ± 0.16) × 10−4 and Γ(Υ (4S) → π+π−Υ (2S)) =
(1.7 ± 0.5) keV.

The branching fractions are compatible with previ-
ous upper limits on these decays [7]. The Υ (4S) partial
widths are within the range spanned by other dipion tran-
sitions in the bb̄ system [10]: Γ(Υ (2S) → π+π−Υ (1S)) =
(8.1 ± 2.1) keV; Γ(Υ (3S) → π+π−Υ (1S)) = (1.2 ±
0.2) keV; Γ(Υ (3S) → π+π−Υ (2S)) = (0.6 ± 0.2) keV.

In conclusion, we measure

B
(

Υ (4S) → π+π−Υ (1S)
)

× B
(

Υ (1S) → µ+µ−
)

=

(2.23 ± 0.25 ± 0.27) × 10−6

and

B
(

Υ (4S) → π+π−Υ (2S)
)

× B
(

Υ (2S) → µ+µ−
)

=

(1.69 ± 0.26 ± 0.20)× 10−6 .



E. Eichten        QWG -- 5th International Workshop on Heavy Quarkonia       DESY October 18, 2007   

Puzzle: 
don’t show leading (S-wave) two 
pion invariant mass distribution 

Υ(3S) → Υ + ππ

Υ(4S) → Υ(2S) + ππ

Many proposals for explaining the ϒ(3S)->ϒ transition 
but most don’t survive results for ϒ(4S): 

◊ Final State Interactions
³

◊ 4 quark intermediate state

◊ dynamical accident - suppress the leading E1 E1 term

 Problem: Compare ϒ(4S)->ϒ(2S), ϒ(2S)->ϒ(1S) and ψ(2S) -> J/ψ  
  essentially the same phase space but different distributions. 

 Problem:  Compare ϒ(4S)->ϒ(2S), ϒ(3S)->ϒ(1S)  
  similiar distributions but shifted masses 

  Worth a closer look.  

◊ coupling to decay channels
 Problem:  Compare ϒ(3S)->ϒ(1S) to ψ(2S)->J/ψ, ϒ(4S)->ϒ(1S)  
  Coupled channel effects should be larger in second set.
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Hybrid States and Lattice QCD
Heavy quark limit:

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)

ΨQQ̄(!r) =
unl(r)

r
Ylm(θ,φ)
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is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)
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In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-
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2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1
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+
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momentum is given by
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value in the centrifugal term is given by
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the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
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states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In
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hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by
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finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)
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Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by
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We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
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for the %+
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finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)

For cc and bb systems neither is adequate.
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FIGURE 2. One possible interpretation of the spectrum in Fig. 1. (a) For small quark-antiquark sepa-

rations, the strong chromoelectric field of the QQ̄ pair repels the physical vacuum (dual Meissner effect)

creating a bubble. The low-lying stationary states are explained by the gluonic modes inside the bubble,

since the bubble surface excitations are likely to be higher lying. (b) For large quark-antiquark separations,

the bubble stretches into a thin tube of flux, and the low-lying states are explained by the collective motion

of the tube since the internal gluonic excitations are much higher lying.

antiquark pair in SU(2) gauge theory also hint at flux tube formation[6].
The spectrum shown in Fig. 1 provides unequivocal evidence that the gluon field can

be well approximated by an effective string theory for large separations r. However,

string formation does not appear to set in until the quark and the antiquark are sepa-

rated by about 2 fm. For small separations, the level orderings and degeneracies are not

consistent with the expectations from an effective string description. More importantly,

the gaps differ appreciably from N"/r with N = 1,2,3, . . .. Such deviations cannot be
considered mere corrections, making the applicability of an effective string description
problematical. Between 0.5 to 2 fm, a dramatic level rearrangement occurs. For separa-

tions above 2 fm, the levels agree without exception with the ordering and degeneracies

expected from an effective string theory. The gaps agree well with N"/r, but a fine struc-
ture remains. The N"/r gaps are a robust prediction of any effective string theory since
they are a feature of the Goldstone modes associated with the spontaneous breaking of

transverse translational symmetry. However, the details of the underlying string theory

are encoded in the fine structure. This first glimpse of such a fine structure offers the

exciting possibility of ultimately understanding the nature of the QCD string in future

higher precision simulations.

Fig. 2 illustrates one possible interpretation of the results shown in Fig. 1. At small

quark-antiquark separations, the strong chromoelectric field of the QQ̄ pair repels the
physical vacuum in a dual Meissner effect, creating a bubble surrounding the QQ̄. The

low-lying stationary states are explained by the gluonic modes inside the bubble, since

the bubble surface excitations are likely to be higher lying. For large quark-antiquark

separations, the bubble stretches into a thin tube of flux, and the low-lying states are

explained by the collective motion of the tube since the internal gluonic excitations,

being typically of order 1 GeV, are now much higher lying.
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Short distance:   Perturbative QCD,  pNRQCD 
singlet:  -4/3 αs /r
octet : 2/3 αs /r      gluelumps

Large distance:   String 
σ r + πN/r     NG string behavour

Λ = 0, 1, 2, ... denoted Σ, Π, Δ, ...
η= ±1 (symmetry under combined charge conjugation and spatial inversion) 

denoted g(+1) or u(-1)   

The leading Born-Oppenheimer approximation

In the leading Born-Oppenheimer approximation, one replaces the covariant Lapla-

cian DDD2 by an ordinary Laplacian !!!
2
, which neglects retardation effects. The spin in-

teractions of the heavy quarks are also neglected, and one solves the radial Schrödinger

equation:

−
1

2µ

d2u(r)

dr2
+

{

〈LLL2
QQ̄

〉

2µr2
+VQQ̄(r)

}

u(r) = E u(r), (2)

where u(r) is the radial wavefunction of the quark-antiquark pair. The total angular
momentum is given by

JJJ = LLL+SSS, SSS= sssQ+ sssQ̄, LLL= LLLQQ̄+ JJJg, (3)

where sssQ is the spin of the heavy quark, sssQ̄ is the spin of the heavy antiquark, JJJg is the

total spin of the gluon field, and LLLQQ̄ is the orbital angular momentum of the quark-

antiquark pair. In the LBO, both L and S are good quantum numbers. The expectation

value in the centrifugal term is given by

〈LLL2
QQ̄

〉 = 〈LLL2〉−2〈LLL · JJJg〉+ 〈JJJ2g〉. (4)

The first term yields L(L+1). The second term is evaluated by expressing the vectors in
terms of components in the body-fixed frame. Let Lr denote the component of LLL along

the molecular axis, and L" and L# be components perpendicular to the molecular axis.

Writing L± = L" ± iL# and similarly for JJJg, one obtains

〈LLL · JJJg〉 = 〈LrJgr〉+
1
2
〈L+Jg− +L−Jg+〉. (5)

Since Jg± raises or lowers the value of $, this term mixes different gluonic stationary
states, and thus, must be neglected in the leading Born-Oppenheimer approximation. In

the meson rest frame, the component of LLLQQ̄ along the molecular axis vanishes, and

hence, 〈LrJgr〉 = 〈J2gr〉 = $2. In summary, the expectation value in the centrifugal term
is given in the adiabatic approximation by

〈LLL2
QQ̄

〉 = L(L+1)−2$2+ 〈JJJ2g〉. (6)

We assume 〈JJJ2g〉 is saturated by the minimum number of allowed gluons. Hence, 〈JJJ
2
g〉= 0

for the %+
g level and 〈JJJ

2
g〉= 2 for the&u and %

−
u levels.Wigner rotations are used as usual

to construct |LSJM;'(〉 states, where ' = JJJg · r̂rr and $ = |' |, then JPC eigenstates are
finally obtained from

|LSJM;'(〉+ )|LSJM;−'(〉, (7)

where ) = 1 for %+ levels, ) = −1 for %− levels, and ) = ±1 for $ ≥ 1 levels. Hence,
the JPC eigenstates satisfy

P= )(−1)L+$+1, C = ()(−1)L+S+$. (8)

withε=+1 for Σ+ and ε=-1 for Σ- both signs for Λ>0.   
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TABLE I: Operators to create excited gluon states for small
qq̄ separation R are listed. E and B denote the electric and
magnetic operators, respectively. The covariant derivative D

is defined in the adjoint representation [10].

gluon state J operator
Σ+ ′

g 1 R · E, R · (D ×B)
Πg 1 R × E, R × (D× B)
Σ−

u 1 R · B, R · (D× E)
Πu 1 R × B, R × (D× E)
Σ−

g 2 (R · D)(R · B)
Π′

g 2 R × ((R · D)B + D(R · B))
∆g 2 (R × D)i(R × B)j + (R × D)j(R × B)i

Σ+
u 2 (R · D)(R · E)

Π′

u 2 R × ((R · D)E + D(R · E))
∆u 2 (R × D)i(R × E)j + (R × D)j(R × E)i

predicted short–distance degeneracies. Only the states
∆u and Σ+′

g show considerable soft breaking of the ap-
proximate symmetry at the shortest R values.
Crossover region. For 0.5 fm < R < 2 fm, a dramatic
crossover of the energy levels toward a string-like spec-
trum as R increases is observed. For example, the states
Σ−

u with N = 3 and Σ−

g with N = 4 break violently away
from their respective short-distance O(3) degeneracies to
approach the ordering expected from bosonic string the-
ory near R ∼ 2 fm.

An interesting feature of the crossover region is the suc-
cessful parametrization of the Σ+

g ground state energy by
the empirical function E0(R) = a + σR− c π

12R
, with the

fitted constant c close to unity, once R exceeds 0.5 fm.
The Casimir energy of a thin flux line was calculated in
Refs. [11, 12], yielding c = 1, and this approximate agree-
ment is often interpreted as evidence for string formation.
While the spectrum, including the qualitative ordering
of the energy levels, differs from the naive bosonic string
gaps for R < 1 fm, a high precision calculation shows
the rapid approach of ceff(R) to the asymptotic Casimir
value in the same R range [13]. Although there is no in-
consistency between the two different findings, a deeper
understanding of this puzzling situation is warranted.

We will return to this issue in a high precision study of
the 3-dimensional Z(2) gauge model in a future publica-
tion [14]. This accurate study of ceff(R) and the excita-
tion spectrum of the Z(2) flux line for a wide range of R
values between 0.3 fm and 10 fm will clearly demonstrate
the early onset of c ≈ 1 without a well-developed string
spectrum. For now, Fig. 3 shows the lowest excitations in
Z(2) for R = 0.7 fm, revealing a bag-like disorder profile
surrounding the static qq̄ pair in the vacuum [14]. The
two lowest energy levels are substantially dislocated from
exact π/R string gaps and all other excitations form a
continuous spectrum above the glueball threshold. Since
the submission of this work, a new study of Z(2) at fi-
nite temperature has appeared [15], reporting very early
onset of string behavior in support of Ref. [13].

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10 12 14

atE!

R/as

Gluon excitations

as/at = z*5

z=0.976(21)

"=2.5

as~0.2 fm

#u

$
-
u

$
+
g’

%g
#g

$
-
g
#g’

#’u
$

+
u

%u

$
+
g

short distance
degeneracies

crossover

string ordering

N=4

N=3

N=2

N=1

N=0

FIG. 2: Short-distance degeneracies and crossover in the
spectrum. The solid curves are only shown for visualization.
The dashed line marks a lower bound for the onset of mixing
effects with glueball states which requires careful interpreta-
tion.

String limit. For R > 2 fm, the energy levels exhibit,
without exception, the ordering and approximate degen-
eracies of string-like excitations. The levels nearly re-
produce the asymptotic π/R gaps, but an intriguing fine
structure remains.

It has been anticipated that the interactions of mass-
less excitations on long flux lines are described by a lo-
cal derivative expansion of a massless vector field ξ with
two transverse components in four–dimensional space-
time [11, 12]. Symmetries of the effective QCD string
Lagrangian require a derivative expansion of the form

Leff = a∂µξ·∂µξ+b(∂µξ·∂µξ)2+c(∂µξ·∂νξ)(∂µξ·∂νξ)+...,
(1)

where the dots represent further terms with four or more
derivatives in world sheet coordinates. The coefficient a
has the dimension of a mass squared and can be identified
with the string tension σ. The other coefficients must be
determined from the underlying microscopic theory. Ex-
amples with calculable coefficients include the D=3 Z(2)
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is defined in the adjoint representation [10].

gluon state J operator
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g 2 (R · D)(R · B)
Π′
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u 2 (R · D)(R · E)
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u 2 R × ((R · D)E + D(R · E))
∆u 2 (R × D)i(R × E)j + (R × D)j(R × E)i

predicted short–distance degeneracies. Only the states
∆u and Σ+′

g show considerable soft breaking of the ap-
proximate symmetry at the shortest R values.
Crossover region. For 0.5 fm < R < 2 fm, a dramatic
crossover of the energy levels toward a string-like spec-
trum as R increases is observed. For example, the states
Σ−

u with N = 3 and Σ−

g with N = 4 break violently away
from their respective short-distance O(3) degeneracies to
approach the ordering expected from bosonic string the-
ory near R ∼ 2 fm.

An interesting feature of the crossover region is the suc-
cessful parametrization of the Σ+

g ground state energy by
the empirical function E0(R) = a + σR− c π

12R
, with the

fitted constant c close to unity, once R exceeds 0.5 fm.
The Casimir energy of a thin flux line was calculated in
Refs. [11, 12], yielding c = 1, and this approximate agree-
ment is often interpreted as evidence for string formation.
While the spectrum, including the qualitative ordering
of the energy levels, differs from the naive bosonic string
gaps for R < 1 fm, a high precision calculation shows
the rapid approach of ceff(R) to the asymptotic Casimir
value in the same R range [13]. Although there is no in-
consistency between the two different findings, a deeper
understanding of this puzzling situation is warranted.

We will return to this issue in a high precision study of
the 3-dimensional Z(2) gauge model in a future publica-
tion [14]. This accurate study of ceff(R) and the excita-
tion spectrum of the Z(2) flux line for a wide range of R
values between 0.3 fm and 10 fm will clearly demonstrate
the early onset of c ≈ 1 without a well-developed string
spectrum. For now, Fig. 3 shows the lowest excitations in
Z(2) for R = 0.7 fm, revealing a bag-like disorder profile
surrounding the static qq̄ pair in the vacuum [14]. The
two lowest energy levels are substantially dislocated from
exact π/R string gaps and all other excitations form a
continuous spectrum above the glueball threshold. Since
the submission of this work, a new study of Z(2) at fi-
nite temperature has appeared [15], reporting very early
onset of string behavior in support of Ref. [13].
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FIG. 2: Short-distance degeneracies and crossover in the
spectrum. The solid curves are only shown for visualization.
The dashed line marks a lower bound for the onset of mixing
effects with glueball states which requires careful interpreta-
tion.

String limit. For R > 2 fm, the energy levels exhibit,
without exception, the ordering and approximate degen-
eracies of string-like excitations. The levels nearly re-
produce the asymptotic π/R gaps, but an intriguing fine
structure remains.

It has been anticipated that the interactions of mass-
less excitations on long flux lines are described by a lo-
cal derivative expansion of a massless vector field ξ with
two transverse components in four–dimensional space-
time [11, 12]. Symmetries of the effective QCD string
Lagrangian require a derivative expansion of the form

Leff = a∂µξ·∂µξ+b(∂µξ·∂µξ)2+c(∂µξ·∂νξ)(∂µξ·∂νξ)+...,
(1)

where the dots represent further terms with four or more
derivatives in world sheet coordinates. The coefficient a
has the dimension of a mass squared and can be identified
with the string tension σ. The other coefficients must be
determined from the underlying microscopic theory. Ex-
amples with calculable coefficients include the D=3 Z(2)

Operators for excited 
gluon states

VQQ(r) determined by direct lattice calculations 

K.J. Juge, J. Kuti and C. Morningstar [PRL 90, 161601 (2003)] 
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Predicted  for 
ϒ(3S)->ϒ(1S)

Kuang &Yan (1981)  

Like the E1 case ?
 Δn =2 overlap suppressed.

∑

nl

|Ψnl >< Ψnl|
Ei − Enl

∼ 1

Ei − ETH
string

+ · · ·

Below lowest intermediate state threshold

 

Hence transition rates fairly insensitive to 
intermediate states details

Note the large variations in phase space 
and overlaps for the various ϒ states.

Table 10: Transitions expectations.

Transition G | < i|r2|f > | G< i|r2|f >
2

(GeV7) (GeV−2) ×102

ψ(2S) → J/ψ 3.56 × 10−2 3.36 40.2
Υ(2S) → Υ(1S) 2.87 × 10−2 1.19 4.06
Υ(3S) → Υ(1S) 1.09 2.37 × 10−1 0.61
Υ(3S) → Υ(2S) 9.09 × 10−5 3.70 0.12
Υ(4S) → Υ(1S) 5.58 9.74 × 10−2 0.48
Υ(4S) → Υ(2S) 2.61 × 10−2 4.64 × 10−1 0.56

Table 11: Transitions expectations.

Transition |F|(full)
(GeV−2)

ψ(2S) → J/ψ 3.82
Υ(2S) → Υ(1S) 1.37
Υ(3S) → Υ(1S) 1.33 × 10−1

Υ(3S) → Υ(2S) 3.70
Υ(4S) → Υ(1S) −1.17 × 10−2

Υ(4S) → Υ(2S) −2.71 × 10−1

F(full) =
∑

n

< i|r|X(n) >< X(n)|r|f >
Ei − EX(0)

Ei − EX(n)

7
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Full overlap calculations gives:

Model results:

 

M(Σg+’(1P)) ≈ 4.55 (cc)
               10.80 (bb)

Table 8: Overlap matrix elements between hybrid bb̄g and bb̄ states.

< Σ+′

g (mP )|r|Υ(nS) > (GeV−1)
n m = 1 m = 2 m = 3 m = 4 m = 5
1 0.874 0.460 0.283 0.196 0.142
2 −2.12 0.871 0.481 0.291 0.196
3 0.811 −3.14 0.99 0.531 0.314
4 0.082 1.23 −3.98 1.14 0.585

Table 9: M1 M1 matrix elements between hybrid bb̄g and bb̄ states.

< Π+
u (mP )|r|Υ(nS) > (GeV−1)

n m = 1 m = 2 m = 3 m = 4 m = 5
1 0.874 0.460 0.283 0.194 0.142
2 −2.12 0.871 0.481 0.291 0.196
3 0.811 −3.14 0.991 0.531 0.314
4 0.082 1.23 −3.98 1.14 0.585

6

If leading <E1-E1> suppressed, can the <M1-M1> significant?   

Table 10: Transitions expectations.
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∑

n

< i|r|X(n) >< X(n)|r|f >
Ei − EX(0)

Ei − EX(n)

7

Table 12: Properties of hybrid Σ+′

g (nP ) in cc̄ and bb̄ systems.

Σ+′

g (nP ) (M(n) − M(n − 1)) < |r| > < v2 >
n (MeV) (fm)

cc̄ 1 - 0.85 0.37
2 360 1.20 0.74

bb̄ 1 - 0.45 0.09
2 300 0.64 0.18
3 265 0.80 0.25
4 240 0.96 0.31
5 225 1.09 0.37

Table 13: Properties of hybrid Π+
u (nP ) in cc̄ and bb̄ systems.

Π+
u (nP ) (M(n) − M(n − 1)) < |r| > < v2 >

n (MeV) (fm)
cc̄ 1 - 0.85 0.37

2 360 1.20 0.74
bb̄ 1 - 0.45 0.09

2 360 0.64 0.18
3 265 0.80 0.25
4 240 0.96 0.31
5 225 1.09 0.37
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Voloshin [PR D74:054022(2006)] Detailed study: S-wave

Here in the first replacement the cross terms between r and q are dropped since they cancel in

tµνλσ due to the C symmetry (p1 ↔ p2), while the gαβ term in the last transition is dropped,

since such structure cancels in the traceless tensor t. Using Eq.(22) one readily finds from

the formula (19) the expressions for the S and D wave amplitudes:

Sµνλσ =
8π2

3b

{

(q2 + m2) (gµλgνσ − gµσgνλ) (23)

−
3

2
κ

(

1 +
2m2

q2

)

[

qµqλgνσ + qνqσgµλ − qνqλgµσ − qµqσgνλ −
1

2
q2 (gµλgνσ − gµσgνλ)

]

}

,

and

Dµνλσ =
8π2

3b

9κ

4
(#µλgνσ + #νσgµλ − #νλgµσ − #µσgνλ) . (24)

4 Two-pion transition amplitudes with the relativistic

corrections

Using the formulas in the equations (2), (5) and (7) and the expressions (23) and (24) for

the dipion production amplitudes in the chiral limit, one can readily find the amplitude of

the transition ψ2 → π+π−ψ1 between generic 3S1 states of a heavy quarkonium. After a

straightforward calculation one finds the S wave decay amplitude

S(ψ2 → π+π−ψ1) = (25)

−
4π2

b
α(12)

0

[

(1 − χM) (q2 + m2) − (1 + χM) κ

(

1 +
2m2

q2

) (

(q · P )2

P 2
−

1

2
q2

)]

(ψ1 · ψ2) ,

as well as three types of D wave amplitude: one unrelated to the spins of the quarkonium

states

D1(ψ2 → π+π−ψ1) = −
4π2

b
α(12)

0 (1 + χM)
3κ

2

#µνP µP ν

P 2
(ψ1 · ψ2) , (26)

and two amplitudes with the correlation with the polarization of the initial and the final

resonances

D2(ψ2 → π+π−ψ1) =
4π2

b
α(12)

0

(

χ2 +
3

2
χM

)

κ

2

(

1 +
2m2

q2

)

qµqνψ
µν (27)

and

D3(ψ2 → π+π−ψ1) =
4π2

b
α(12)

0

(

χ2 +
3

2
χM

)

3κ

4
#µνψ

µν . (28)
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spin independent
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In these formulas the following notation is used: P stands for the 4-momentum of the initial

quarkonium resonance, ψµ
1 and ψµ

2 are the polarization 4-vectors for the 3S1 states, and ψµν

is the spin-2 structure ψµν = ψµ
1 ψν

2 + ψν
1ψ

µ
2 − (2/3) (ψ1 · ψ2) (P µP ν/P 2 − gµν). Finally, χM

and χ2 stand for the ratia

χM =
αM

α0
, χ2 =

α2

α0
(29)

and encode the relative magnitude of the O(v2/c2) relativistic effects due to respectively the

chromo-magnetic interaction (Eq.(6)) and the 3D1 −3 S1 mixing.

The three D waves correspond to different angular correlations. The first one, D1, given

by Eq.(26) corresponds to a D-wave motion in the c.m. frame of two pions, which correlates

with the motion of the c.m. system in the laboratory frame, i.e. with the direction of $q.

This D wave arises in the leading nonrelativistic approximation [18] and is in fact observed

and measured experimentally [9] for the transition ψ(2S) → π+π−J/ψ. The second D-wave

amplitude, D2 in Eq.(27), corresponds to the two pions being in the S wave in their c.m.

system and describes the correlation of the spins of the initial and the final resonances with

the D-wave motion of the two-pion system as a whole. Finally, the amplitude D3 given

by Eq.(28) corresponds to a D-wave motion of the pions in their c.m. frame, which D

wave is correlated with the spins of the quarkonium states. It can be noted that the two

latter amplitudes are proportional to a product of two relatively small parameters κ and

α2 + (3/2) αM ∼ v2/c2. Neither D2 nor D3 have yet been observed experimentally, although

a study [23] of polarization effects in the decay Υ(2S) → π+π−Υ, utilizing a transversal po-

larization of the DORIS beams qualitatively confirms that these spin-dependent amplitudes

are quite small. (A discussion can be found in the review [24].)

The transitions between 1S0 states of quarkonium have not been observed yet. One may

hope however that with a dedicated effort a two-pion transition from the recently found

ηc(2S) resonance: ηc(2S) → π+π−ηc can be observed and studied. Within the approach

discussed here such transition is closely related to the familiar decay ψ(2S) → π+π−J/ψ,

and in fact can be used for a useful calibration of the total width of ηc(2S) [25]. Clearly,

on the theoretical side the transitions between 1S0 states are simpler than those between

the 3S1 ones since no polarization effects are involved. On the other hand the effect of the

M1 interaction (Eq.(6)) is enhanced for the 1S0 states (Eq.(7)) by a factor of 3, so that the

relevant transition amplitudes of a generic η2 → π+π−η1 transition are given by

S(η2 → π+π−η1) = (30)

11

magnetic S-D mixing 
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discussed here such transition is closely related to the familiar decay ψ(2S) → π+π−J/ψ,

and in fact can be used for a useful calibration of the total width of ηc(2S) [25]. Clearly,

on the theoretical side the transitions between 1S0 states are simpler than those between

the 3S1 ones since no polarization effects are involved. On the other hand the effect of the

M1 interaction (Eq.(6)) is enhanced for the 1S0 states (Eq.(7)) by a factor of 3, so that the

relevant transition amplitudes of a generic η2 → π+π−η1 transition are given by

S(η2 → π+π−η1) = (30)

11

where q = p1 + p2 is the total four-momentum of the dipion.

Few remarks are due regarding effects of higher order in αs. The trace term in Eq.(19)

receives no renormalization, provided that the coefficient b is replaced by β(αs)/α2
s with

β(αs) = bα2
s + O(α3

s) being the full beta function in QCD. This modification however only

affects the overall normalization of the trace part, and can in fact be absorbed into the

definition of the heavy quarkonium amplitudes. On the contrary, the relative coefficient of

the traceless term in Eq.(19), i.e. the parameter κ, does depend on the normalization scale,

which scale is appropriate to be chosen as the characteristic size of the heavy quarkonium [18].

However, given other uncertainties in the analysis of the two-pion transitions, the logarithmic

variation of κ is a small effect. In particular, this effect is likely to be smaller than the

discussed in this paper relativistic effects in the amplitudes of the two-pion emission.

The matrix element in Eq.(19) describes the production of the two pions in two partial

waves in their center of mass system: the S wave and the D wave. The two waves can

be measured separately, and also any effects of the final state interaction between pions

are different in these two orbital states. Therefore it is quite instructive for the subsequent

discussion to explicitly separate the S and D waves in the matrix element, i.e. to rewrite

the amplitude (19) in the form

− 〈π+(p1)π
−(p2)|F

a
µνF

a
λσ|0〉 = Sµνλσ + Dµνλσ . (20)

Clearly, the trace term in Eq.(19) corresponds to a pure S wave, while the traceless term

proportional to κ contains both waves. In order to perform explicit partial wave separation

in tµνλσ it is helpful to introduce [18] the four vector r = p1 − p2 describing the relative

momentum of the two pions, which reduces to a purely spatial vector in the c.m. system of

the pions ((r · q) = 0). Then the tensor

%µν = rµrν +
1

3

(

1 −
4m2

q2

)

(q2 gµν − qµqν) (21)

is also purely spatial in the c.m. frame and corresponds to pure D wave. Using this tensor

one can make the following series of replacements for the terms of the generic structure

p1αp2β in the tensor tµνλσ:

p1αp2β →
1

4
qαqβ −

1

4
rαrβ =

1

4
qαqβ +

1

12

(

1 −
4m2

q2

)

(q2 gαβ − qαqβ) −
1

4
%αβ

→
1

6

(

1 +
2m2

q2

)

qαqβ −
1

4
%αβ . (22)

9

rµ = (k1µ − k2µ)Pµ = MAδ0
µ

If <M1-M1> term significant,                 
expect noticeable presence of D2 and D3 in ϒ(3S) ->ϒ +ππ

O(v2) O(v2) 

the motion of the dipion, i.e. of the vector !q.

For consideration of the effects of different terms of the amplitude in the observable phase

space distribution and also for evaluating the significance of the ππ rescattering it is helpful

to write the decay amplitude as a sum of partial waves[9]:

M = S (ε1 · ε2) + D1 $µν

P µP ν

P 2
(ε1 · ε2) + D2 qµ qν εµν + D3 $µν εµν . (2)

In this expression P is the 4-momentum of the initial resonance. The tensor $µν corresponds

to a D-wave spatial tensor made out of momenta of the pions in their c.m. frame. Namely,

using the notation r = p1 − p2, this tensor is defined as[5]

$µν = rµrν +
1

3

(

1 −
4m2

π

q2

)

(q2 gµν − qµqν) . (3)

Finally, εµν stands for the spin-2 tensor made from the polarization amplitudes of the reso-

nances

εµν = εµ
1ε

ν
2 + εν

1ε
µ
2 +

2

3
(ε1 · ε2)

(

P µP ν

P 2
− gµν

)

. (4)

The terms in the expression (2) describe an S wave and three possible types of D-wave

motion: the term with D1 corresponds to a D wave in the c.m. system of the two pions

correlated with the overall motion of the dipion in the rest frame of the initial state, the D2

term describes the D-wave motion of the dipion as a whole, correlated with the spins of the

Υ resonances, and finally, the D3 term corresponds to the correlation between the spins and

the D-wave motion in the c.m. frame of the dipion. One can also notice that the S and D1

terms contain an overall spin-0 combination of the quarkonium polarizations, so that there

is no interference between these two terms and those with D2 and D3, if no polarization

information in the rate is used. In particular, the distribution of the rate studied in Ref.[8]

can be written as
dΓ

d cos θX dq
∝ |M|2X

√

q2
0 − q2

√

q2 − 4 m2
π , (5)

where |M|2X stands for the square of the amplitude appropriately averaged/summed over all

the variables except for θX and q2,

|M|2X = |S|2 −
2

3

(

1 − 3 cos2 θX

) (

q2
0 − q2

)

(

1 −
4m2

π

q2

)

Re (SD∗

1) (6)

+
1

9

(

1 − 3 cos2 θX

)2 (

q2
0 − q2

)2

(

1 −
4m2

π

q2

)2

|D1|2 +
8

9

(

q2
0 − q2

)2

|D2|2

3

S-wave
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BUT - In addition to the suppression of the M1-M1 term 
by <v2> relative to the dominate E1-E1 term: 

Radial overlap amplitude: with the hybrid states 

∑

nl

|Ψnl >< Ψnl|
Ei − Enl

∼ 1

Ei − ETH
string

+ · · ·

Again below lowest intermediate state threshold

In this limit the overlap vanishes since <f|i>=0 (i≠f)

A complete calculation yields:

The M1-M1 term is highly suppressed !

Table 8: Overlap matrix elements between hybrid bb̄g and bb̄ states.

< Σ+′

g (mS)|r|Υ(nS) > (GeV−1)
m n = 1 n = 2 n = 3 n = 4
1 1.04 −1.60 0.18 0.03
2 0.25 1.72 −2.52 0.25
3 0.03 0.38 2.31 −3.27
4 0.01 0.12 0.47 2.86

Table 9: M1 M1 matrix elements between hybrid bb̄g and bb̄ states.

< Π+
u (mP )|r|Υ(nS) > (GeV−1)

n m = 1 m = 2 m = 3 m = 4 m = 5
1 0.705 0.470 0.346 0.274 0.226
2 −0.851 0.358 0.306 0.239 0.200
3 : 0.027 −0.934 0.263 0.254 0.199
4 −0.006 0.024 −0.968 0.220 0.227

7

Table 12: Transitions expectations.

Transition |F|(full)
(GeV−2)

ψ(2S) → J/ψ 1.81 × 10−1

Υ(2S) → Υ(1S) 3.04 × 10−1

Υ(3S) → Υ(1S) 1.70 × 10−1

Υ(3S) → Υ(2S) 1.74 × 10−1

Υ(4S) → Υ(1S) 1.06 × 10−1

Υ(4S) → Υ(2S) 0.92 × 10−1

Table 13: Properties of hybrid Σ+′

g (nP ) in cc̄ and bb̄ systems.

Σ+′

g (nP ) (M(n) − M(n − 1)) < |r| > < v2 >
n (MeV) (fm)

cc̄ 1 - 0.85 0.37
2 360 1.20 0.74

bb̄ 1 - 0.45 0.09
2 300 0.64 0.18
3 265 0.80 0.25
4 240 0.96 0.31
5 225 1.09 0.37

8
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FIG. 8: Plots overlaying projections of the data (points with error bars) and the fit result (his-

tograms) onto the Mππ and cos θX variables. The plots are summed over electrons and muons, but
are differentiated by pion charge. The neutral modes (open symbols, dashed lines) show only a
positive distribution in cos θX because the two pions are indistinguishable. For the charged modes

(solid symbols, solid lines) the angle is that of the π+.

and proportional to 1/
√

ai, where ai is the Monte Carlo phase space yield in bin i. Hence,

σi =
√

di + d̃2
i /ai.

The bins for which di = 0 require special treatment, and σi is modified appropriately. To
minimize the effect of such bins with zero yield, we sum over muon and electron final states.
This takes a weighted average over the distributions, rather than taking account of the
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Upsilon dipion transition in CLEO    DPF'06 Honolulu    T. Skwarnicki 3

Dalitz variables

• Three body decay: !’"!##. If no coupling of ## system to 

!’s polarizations then only 2 degrees of freedom.
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QQ(n3S1) -> QQ(m3S1) + π+π-Upsilon dipion transition in CLEO    DPF'06 Honolulu    T. Skwarnicki 5

Initial Theory 

• In Multipole Expansion model, the 3rd term involves magnetic 

interactions (spin flip) and can be neglected compared to the leading 

E1*E1 transition [Yan PR,D22,1652 (80)].  

C 0!

• In QCD-motivated calculation of soft-pion piece in E1*E1 transition, 

expect S-wave to dominate in the non-relativistic limit producing 

M("") distribution similar to the one due to the 1st term 
[Voloshin,Zakharov,PRL,45,688(80); Novikov, Shifman, ZP,C8,43(81)]

A B!

• Observation of #(2S)$#(1S)"" with the 

same M("") distribution was a great 

success of this theoretical framework and 

reinforced A-dominance dogma

• Consistent with the phenomenological 

observation by Brown&Cahn, that M("") 
in %(2S)$J/%(1S)"" was well 

reproduced by assuming B=C=0

[ ]22

1 2 1 2 2 1A B C( )( 2 ) ( ) ( )( ) ( )( )M q m EE q q q q!" " " " " " " "& & & &= ' ( + ' + ' ' + ' '

M"" (GeV) 

Fit, No C stat. effcy. (π±) effcy.(π0) bg. sub.

Υ(3S) → Υ(1S)ππ
"(B/A)

#(B/A)

−2.523

±1.189

±0.031

±0.051

±0.019

±0.026

±0.011

±0.018

±0.001

±0.015

Υ(2S) → Υ(1S)ππ
"(B/A)

#(B/A)

−0.753

0.000

±0.064

±0.108

±0.059

±0.036

±0.035

±0.012

±0.112

±0.001

Υ(3S) → Υ(2S)ππ
"(B/A)

#(B/A)

−0.395

±0.001

±0.295

±1.053

±0.025

±0.180

±0.120

±0.001

Fit, float C stat. effcy. (π±) effcy.(π0) bg. sub.

Υ(3S) → Υ(1S)ππ
|B/A|
|C/A|

2.89
0.45

±0.11
±0.18

±0.19
±0.28

±0.11
±0.20

±0.027
±0.093

TABLE IV: Combined fit results for all transitions with statistical and systematic uncertainties.

The systematic uncertainties are in order: π± detection efficiency, π0 detection efficiency, and
background subtraction for the Υ(3S) → Υ(2S)ππ transition. The upper set of results are for
the fits assuming contributions to the amplitude from only the A and B terms. The bottom two

lines are the fit results when the C term is allowed to be non-zero. The imaginary part of the
ratio has a two-fold ambiguity and is only known to within a sign. Note that for the transition

Υ(3S) → Υ(2S)ππ we do not have fits for the charged di-pion case.

of the Brown and Cahn decay amplitude (Eqn. 1) are included in our model, and the fits
account for the structure of the decay without introduction of new physics or contributions
from resonances.

The matrix elements are indicated as points in the complex plane in Fig. 12. For the
“anomalous” Υ(3S) → Υ(1S)ππ transition we fit for the presence of the “suppressed” C
term as a test for the breakdown of the underlying assumptions leading to the standard
matrix element. This term is not significant when systematic errors are taken into account
and the quality of the fit to the data is good without it. Therefore, we set an upper limit of
|C/A| < 1.09 at 90% C.L..

We note in particular that the treatment of the di-pion transitions via the full allowed
matrix element under the assumptions in Refs. [3, 4, 23, 24, 25] allows two matrix elements,
only one of which has traditionally been assumed to be non-zero. The description of the
Υ(3S) → Υ(1S)ππ transition di-pion mass and angular structure as anomalous is only true
in the limit of this assumption. This analysis shows in particular that the description of the
decay process in terms of the two favored amplitude terms, with complex form factors con-
stant over the Dalitz plane, suffices to describe the decay distributions of Υ(3S) → Υ(1S)ππ,
Υ(3S) → Υ(2S)ππ, and Υ(2S) → Υ(1S)ππ, provided the form factors are allowed to vary
with the transition. For the Υ(3S)→ Υ(1S)ππ transition, we find |B/A| = 2.79±0.05, which
could imply a large magnitude of B or a suppressed A; recent theoretical considerations [20]
favor the latter interpretation. While smaller than in the case of Υ(3S) → Υ(1S)ππ, |B/A|
is also determined to be non-zero for the case of Υ(2S) → Υ(1S)ππ. The large imaginary
part of B/A is intriguing [27].

While there are not yet first principles predictions of the values of the matrix elements
of the decays studied here, this analysis does provide complete measurements of the relative
matrix element magnitudes and phases that can serve as a point of comparison with ab initio
QCD calculations.

We gratefully acknowledge the effort of the CESR staff in providing us with excellent
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CLEO
[hep-ex/0706.2317] 

Hindered M1-M1 term => C≈0.     
Consistent with CLEO results.  

Small D-wave contributions

Useful to look at polarization 
info.                            
Dubynskiy & Voloshin [hep-ph/0707.1272]

Fit, no C, total error

Υ(3S) → Υ(1S)ππ

"(B/A)

#(B/A)
|B/A|
δBA

−2.52 ± 0.04

±1.19 ± 0.06
2.79 ± 0.05

155(205) ± 2

Υ(2S) → Υ(1S)ππ

"(B/A)
#(B/A)

|B/A|
δBA

−0.75 ± 0.15
0.00 ± 0.11

0.75 ± 0.15
180 ± 9

Υ(3S) → Υ(2S)ππ
"(B/A)
#(B/A)

−0.40 ± 0.32
0.00 ± 1.1

Fit, float C, total error

Υ(3S) → Υ(1S)ππ
|B/A|
|C/A|

2.89 ± 0.25
0.45 ± 0.40

TABLE V: Fit results for all transitions with total uncertainties. These numbers represent the final
result of this analysis. In the case of the magnitude ratio |C/A|, we also quote a limit as detailed

in the text. The phase angles are quoted in degrees, and have a two-fold ambiguity of reflection in
the real axis.

FIG. 12: Complex values of matrix element ratio B/A from combined fits for the three transitions
under the assumption that C = 0. Note the two-fold ambiguity in the imaginary part.

luminosity and running conditions. D. Cronin-Hennessy and A. Ryd thank the A.P. Sloan
Foundation. This work was supported by the National Science Foundation, the U.S. De-
partment of Energy, and the Natural Sciences and Engineering Research Council of Canada.
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FIG. 11: The left plot shows the amplitude component functions SA, SB, DA, and DB as a function

of Mππ ≡
√

q2. These are summed to obtain the total amplitude. The partial rate to S-wave and
D-wave components are shown in the right plot for the Υ(3S) → Υ(1S)ππ decay as determined

from the results of this analysis: B/A = −2.52+1.19i. Note that the D-wave contribution is largest
in the low to intermediate range of q2, and is suppressed at both extrema by angular momentum
barrier effects. Note further that this is not a resonance phenomenon despite its shape in Mππ and

the changing angular structure.

This partial wave extraction becomes much more complex if the form factors are assumed
to be variable over the Dalitz space, for example due to resonant structure/enhancement in
the decay. This will introduce higher powers of cos2 θX to the overall amplitude and will
need higher partial wave components to account for the variation.

The presence of D-wave components in the angular distribution of the decay is not in
itself an indication of resonances contributing, nor the presence of unaccounted-for physics.
The presence of a q2-dependent D-wave component could simply be a consequence of angu-
lar momentum barriers in the three body phase space of the decay. The data do not demand
the introduction of a q2-dependent magnitude or phase for B/B. These small D-wave com-
ponents are consistent with those derived in a recent paper by Voloshin [20], in which he
emphasizes the importance of relativistic and chromo-magnetic effects.

IV. SYSTEMATIC UNCERTAINTIES

We address three sources of systematic uncertainty in the measurements of B/A and
C/A: model dependence, detector efficiency and resolution, and backgrounds.

In Sect. III we showed that our model provides a very good description of the data in the
(q2, cos θX) plane and that the presence or absence of the chromo-magnetic coupled term in
the amplitude has little effect on |B/A| and δBA.

Uncertainty in the estimation of the detector efficiency and resolution contributes most
significantly in the charged mode analyses due to our limited knowledge of the tracking
efficiency at very low momentum. In that the low momentum region is precisely where
the matrix element has potential suppression in the B term, this can potentially cause a

18
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Single light hadron transitions
<E1 M1>; <M1 M1>, <E1 M2> higher order 

O(v) O(v2)
CiCf = −1 + 1

symmetry 
  breaking: 
  π; η, ω  

chiral effective theory:  

CHAPTER 4

For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√

MSMS′

f2
π

ε′ · ε∗ (ASS′p1 · p2 + BSS′v · p1v · p2) (4.158)

where ε and ε′ are the polarisation vectors of quarkonium states; p1, p2 are the momenta of the two pions.

It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process

in question, which contains a third independent term given by:

CSS′
4i
√

MSMS′

f2
π

(
ε′ · p1ε

∗ · p2 + ε′ · p2ε
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] finds CSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-

metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-

tion 7.2). Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms



 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causes π0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)

and that giving rise to the mixing of η′ with π0 and η is

Lηη′ =
ifπ

4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

where λ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states π̃0, η̃, and η̃′ determined from the above Lagrangians are:

π̃0 = π0 + εη + ε′η′, η̃ = η − επ0 + θη′, η̃′ = η′ − θη − ε′π0, (4.163)

in which the mixing angles are

ε =
(md − mu)

√
3

4(ms −
mu + md

2
)
, ε′ =

λ̃(md − mu)√
2(m2

η′ − m2
π0)

, θ =

√
2

3

λ̃

(
ms −

mu + md

2

)

m2
η′ − m2

η
. (4.164)

7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the

amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:

namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-

sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processes n3
i S1→n3

fS1 + π + π. To lowest order, these are double
electric-dipole transitions (E1E1). The transition amplitude can be obtained from the S matrix element
(4.143). After some algebra, we obtain [230, 231, 237]

ME1E1 = i
g2
E

6

∑

KLK′L′

〈Φfh|x · E|KL〉
〈

KL

∣∣∣∣
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For instance, the amplitude for the decay (4.149) is given by:

M(3S1→3S1 + ππ) =
4i
√

MSMS′

f2
π

ε′ · ε∗ (ASS′p1 · p2 + BSS′v · p1v · p2) (4.158)

where ε and ε′ are the polarisation vectors of quarkonium states; p1, p2 are the momenta of the two pions.

It is well known that the use of chiral symmetry arguments leads to a general amplitude for the process

in question, which contains a third independent term given by:

CSS′
4i
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MSMS′
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π

(
ε′ · p1ε

∗ · p2 + ε′ · p2ε
∗ · p1

)
. (4.159)

In the nonrelativistic limit in QCDME, Yan [230] finds CSS′ = 0. It is interesting to note that, within
the present formalism, this result is an immediate consequence of the chiral and heavy quark spin sym-

metries. However, these symmetries are not exact and corrections to the symmetry limit are expected.

In the chiral Lagrangian (CL) approach, the π0 − η − η′ mixings can be derived, which should
be taken into account in predicting single pseudoscalar meson transitions of heavy quarkonia (cf. Sec-

tion 7.2). Let us define

m̂ ≡




mu 0 0
0 md 0
0 0 ms



 . (4.160)

The Lagrangian that gives mass to the pseudoscalar octet (massless in the chiral limit) and causes π0 − η
mixing is

Lm = λ0〈m̂(Σ + Σ†)〉, (4.161)

and that giving rise to the mixing of η′ with π0 and η is

Lηη′ =
ifπ

4
λ̃〈m̂(Σ − Σ†)〉η′, (4.162)

where λ̂ is a parameter with the dimension of a mass. At first order in the mixing angles the physical
states π̃0, η̃, and η̃′ determined from the above Lagrangians are:

π̃0 = π0 + εη + ε′η′, η̃ = η − επ0 + θη′, η̃′ = η′ − θη − ε′π0, (4.163)

in which the mixing angles are
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7.2 Predictions for hadronic transitions in the single-channel approach

In this section, we give the predictions for HTs in the single-channel approach. In this approach, the

amplitude of HT is diagrammatically shown in Fig. 4.13 in which there are two complicated vertices:

namely, the MGE vertex of the heavy quarks and the vertex of hadronization (H) describing the conver-

sion of the emitted gluons into light hadrons. In the following, we shall treat them separately.

Let us first consider the HT processes n3
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Table 6: Single light hadron transitions observed in the cc̄ system. Total widths as
in Table 1.

Transition Branching Fraction 3 Partial Width
i → f + X (%) (keV)

ψ(2S) → J/ψ η 3.25 ± 0.06 ± 0.11 11.0 ± 0.84
π0 0.13 ± 0.01 ± 0.01 0.44 ± 0.06

ψ(2S) → hc(1P ) π0 (1.0 ± 0.2 ± 0.18) × 10−1 0.34 ± 0.10
ψ(3770) → J/ψ η (0.87 ± 0.33 ± 0.22) × 10−1 20 ± 11

Table 7: Single light hadron transitions observed in the bb̄ system.

Transition Branching Fraction Partial Width 4

i → f + X (%) (keV)
Υ(2S) → Υ(1S) η (2.5 ± 0.7 ± 0.5) × 10−2 (7.2 ± 2.3) × 10−3

χb1(2P ) → Υ(1S) ω 1.63 ± 0.33 ± 0.16 1.56 ± 0.59
χb2(2P ) → Υ(1S) ω 1.10 ± 0.30 ± 0.11 1.52 ± 0.64

3Using NRQCD and measured 13PJ decay rates to guess Br(hc → ηc+γ) = 0.4 and Γ(hc(1P )) =
87 keV.

4Total widths: Γ(Υ(2S)) = 28.62 ± 1.30 keV, Γ(Υ(3S)) = 17.28 ± 0.61 keV, Γ(Υ(4S)) = 110 ±
13 MeV, Γ(χb1(2P )) = 96 ± 16 keV and Γ(χb2(2P )) = 138 ± 19 keV.
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XYZ hadronic transitions
Many new states :                (Round table Friday 17:35) 

State EXP M + i Γ (MeV) JPC Decay Modes 
Observed

Production Modes 
Observed

X(3872) Belle,CDF, D0,
 Cleo, BaBar 3871.2±0.5 + i(<2.3) 1++

π+π-J/ψ,  π+π-π0J/ψ, 
ΥJ/ψ B decays,  ppbar 

Belle
BaBar

3875.4±0.7+1.2-2.0

3875.6±0.7+1.4-1.5
D0D0π0 B decays 

Z(3930) Belle 3929±5±2 + i(29±10±2) 2++ D0D0, D+D- ϒϒ

Y(3940) Belle
BaBar

3943±11±13 + i(87±22±26)
3914.3+3.8-3.4 ±1.6+ i(33+12-8 ±0.60) 1-- ωJ/ψ B decays 

X(3940) Belle 3942+7-6±6 + i(37+26-15±8) JP+ DD* e+e- (recoil against J/ψ)

Y(4008) Belle 4008±40+72-28 + i(226±44+87-79) 1-- π+π-J/ψ e+e- (ISR)

X(4160) Belle 4156+25-20±15+ i(139+111-61±21) JP+ D*D* B decays 

Y(4260)
BaBar
Cleo
Belle

4259±8+8-6 + i(88±23+6-4)
4284+17-16 ±4 + i(73+39-25±5) 
4247±12+17-32 + i(108±19±10)

1-- π+π-J/ψ, π0π0J/ψ,
 K+K-J/ψ e+e- (ISR), e+e- 

Y(4350) BaBar
Belle

4324±24 + i(172±33) 
4361±9±9 + i(74±15±10) 1-- π+π-ψ(2S) e+e- (ISR)

Z+(4430) Belle 4433±4±1+ i(44+17-13+30-11) JP π+ψ(2S) B decays 

Y(4620) Belle 4664±11±5 + i(48±15±3) 1-- π+π-ψ(2S) e+e- (ISR)
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Comments for Hybrid Interpretations 

Information from hadronic transitions can be used to estimate 
decay rates for a hybrid 1-- state (H)  to a (QQ) state (ψ(nS)) + 
light hadrons.

Branching ratios: BR(H->ψ’ + π+π-)/BR(H->J/ψ + π+π-)  
calculable.

Mixing between (QQ) states and hybrid (QQg) states can be 
calculated using Lattice QCD.  

n3S1

m3S1

light hadrons
sum over
hybrids

mixing
coefficient
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FIG. 4: The “Υ(5S)” yields as functions of M(π+π−) and cos θHel for (a,c) Υ(1S)π+π− and (b,d)

Υ(2S)π+π− transitions. The shaded (open) histogram are from MC simulations using the model
of Ref. [1] (phase-space model).

TABLE I: Signal yield (Ns), significance (Σ), reconstruction efficiency, and observed cross-section
(σ) for e+e− → Υ(nS)π+π− and Υ(1S)K+K− at

√
s ∼ 10.87 GeV. Assuming the Υ(5S) to be

the sole source of the observed events, the branching fractions (B) and the partial widths (Γ) for
Υ(5S) → Υ(nS)π+π− and Υ(1S)K+K− are also given. The first uncertainty is statistical, and
the second is systematic.

Process Ns Σ Eff.(%) σ(pb) B(%) Γ(MeV)

Υ(1S)π+π− 325+20
−19 20σ 37.4 1.61 ± 0.10 ± 0.12 0.53 ± 0.03 ± 0.05 0.59 ± 0.04 ± 0.09

Υ(2S)π+π− 186 ± 15 14σ 18.9 2.35 ± 0.19 ± 0.32 0.78 ± 0.06 ± 0.11 0.85 ± 0.07 ± 0.16

Υ(3S)π+π− 10.5+4.0
−3.3 3.2σ 1.5 1.44+0.55

−0.45 ± 0.19 0.48+0.18
−0.15 ± 0.07 0.52+0.20

−0.17 ± 0.10

Υ(1S)K+K− 20.2+5.2
−4.5 4.9σ 20.3 0.185+0.048

−0.041 ± 0.028 0.061+0.016
−0.014 ± 0.010 0.067+0.017

−0.015 ± 0.013

distributions give rise to 4.4% and 6.8% error for Υ(1S)π+π− and Υ(2S)π+π− MC efficien-
cies, respectively. For the other two modes, the model of Ref. [1] is assumed. The difference
between this model and the phase-space model is included as a systematic uncertainty for this
assumption. A relative large uncertainty of 13.6% arises for the “Υ(5S)” → Υ(1S)K+K−

channel, while the corresponding error for “Υ(5S)” → Υ(3S)π+π− is small (3.2%) due to
limited phase-space. The uncertainties from PDF parameterization are obtained either by
replacing the signal PDF with a sum of three Gaussians, or by a second order polynomial
for the background. The difference between the fits with alternative PDFs and the nominal
results are included as systematic uncertainties. The selection criteria for rejecting radiative
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Υ(2S)π+π− transitions. The shaded (open) histogram are from MC simulations using the model
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√
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the sole source of the observed events, the branching fractions (B) and the partial widths (Γ) for
Υ(5S) → Υ(nS)π+π− and Υ(1S)K+K− are also given. The first uncertainty is statistical, and
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Process Ns Σ Eff.(%) σ(pb) B(%) Γ(MeV)

Υ(1S)π+π− 325+20
−19 20σ 37.4 1.61 ± 0.10 ± 0.12 0.53 ± 0.03 ± 0.05 0.59 ± 0.04 ± 0.09
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−0.15 ± 0.07 0.52+0.20
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distributions give rise to 4.4% and 6.8% error for Υ(1S)π+π− and Υ(2S)π+π− MC efficien-
cies, respectively. For the other two modes, the model of Ref. [1] is assumed. The difference
between this model and the phase-space model is included as a systematic uncertainty for this
assumption. A relative large uncertainty of 13.6% arises for the “Υ(5S)” → Υ(1S)K+K−

channel, while the corresponding error for “Υ(5S)” → Υ(3S)π+π− is small (3.2%) due to
limited phase-space. The uncertainties from PDF parameterization are obtained either by
replacing the signal PDF with a sum of three Gaussians, or by a second order polynomial
for the background. The difference between the fits with alternative PDFs and the nominal
results are included as systematic uncertainties. The selection criteria for rejecting radiative
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New Belle Measurements - [hep-ex/0710.2577]
Υ(5S) -> π+π-  + Υ(nS)  (n=1,2,3)

Large partial rates.            
Continuum e+e--> ππΥ(nS) 
background not subtracted.      

M(ππ) and angular distribution.  
Compare to Υ(4S).
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phase space (GeV-7)

Table 12: Transitions expectations.

Transition |F|(full)
(GeV−2)

ψ(2S) → J/ψ 1.81 × 10−1

Υ(2S) → Υ(1S) 3.04 × 10−1

Υ(3S) → Υ(1S) 1.70 × 10−1

Υ(3S) → Υ(2S) 1.74 × 10−1

Υ(4S) → Υ(1S) 1.06 × 10−1

Υ(4S) → Υ(2S) 0.92 × 10−1

Table 13: Transitions expectations.

Transition Ratio Belle
R(2, 1) 1.47 ± 0.15 ± 0.20
R(3, 1) 0.91 ± 0.35 ± 0.15

8

If lowest hybrid mass near Υ(5S) a few states 
dominate sum. Results sensitive to mass value.      

If hybrid mass 10.75 + i(0.1) (GeV),             
obtain R(2,1)≈1.1 and R(3,1)≈0.08.

Overall scale of transitions more than an order  
of magnitude larger than theory expects. 

theory -  hadronic transition rates
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Summary
In the presence of much more accurate data, multipole 
expansions for both electromagnetic and hadronic transitions 
hold up well.

Significant relativistic corrections for the cc system.  Reduced 
corrections for the bb system.  Generally consistent with 
velocity scaling expectations: 

In puzzling transitions (below threshold), the leading order 
expansion coefficient is dynamically suppressed:

Υ(3S) -> χb(1P) E1 rate - Cancellations in overlap amplitude for 
states with nodes in their radial wavefunctions.  Here nearly 
complete. 

Υ(3S) -> ηb(1S), ... M1 transitions - Hindered, so overlap is 
zero in leading order.                                
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Υ(3S) -> Υ(1S) +2π, ...  E1-E1 leading term dynamically 
suppressed.   Small D-wave component in the two pion  
invariant mass distribution.  

For all Υ(nS) ->Υ(mS) +2π,  M1-M1 terms are dynamically 
suppressed relative to their natural O(v2) strength.

The situation above threshold is not yet clear:

For any XYZ state that is a hybrid,  its decays to    
quarkonium states may be related to the standard hadronic 
transitions.

The new Υ(5S) -> Υ(nS) + 2π (n=1,2,3) transitions reported by 
Belle are much larger than expected.

Modern theoretical tools (effective theories and nonperturbative 
LQCD) combined with more detailed high statistics experimental 
data will help resolve these issues.


