Quarkonium Transitions: Update E. Eichten*

- QCD and the Multipole expansion
- Electromagnetic Transitions E1, M1
 - Overlaps and Relativistic Corrections
- Hadronic Transitions
 - Two Pion Transitions
 - $\circ~\pi,\eta$ and ω transitions
- XYZ transitions
- Summary

*E.E., S. Godfrey, Hanna Mahlke and J. Rosner [hep-ph/0701208]

cc Transitions

Mass (GeV/ c^2)

bb Transitions

Multipole Expansion

HQET

NRQCD

In QCD the effective interaction for heavy quarks is

$$\mathcal{L}_{\text{NRQCD}} = \psi^{\dagger} \left(i D_0 + \frac{\mathbf{D}^2}{2m_Q} \right) \psi + \frac{c_F}{2m_Q} \psi^{\dagger} \boldsymbol{\sigma} \cdot g \mathbf{B} \psi + o(\frac{1}{m_Q^2}) + [\psi \to i \sigma^2 \chi^*, A_\mu \to -A_\mu^T]$$

Including EM interactions

Theory of quarkonium transitions relies on the multipole expansion

$$\mathbf{A}(R_{\mathrm{cm}}, r, t) = \mathbf{A}(R_{\mathrm{cm}}, t) + \mathbf{x} \cdot \nabla \mathbf{A}(R_{\mathrm{cm}}, t) + \dots$$
 expansion kr/2

Electric

$$\frac{1}{m_Q} \{\mathbf{p}, \mathbf{A}(R_{cm}, t) + ...\} = \mathbf{r} \cdot \mathbf{E}(R_{cm}, t) + ...$$
CM expand in kr/2
Siegert's theorem
using $i[\mathbf{H}, \mathbf{r}] = \frac{2\mathbf{p}}{m_Q}$ and $i[\mathbf{H}, \mathbf{A}] = \frac{\partial}{\partial t}\mathbf{A} = \mathbf{E}$
E1
 $e_Q \psi^{\dagger} \mathbf{r} \cdot \mathbf{e} \mathbf{E} \psi + \cdots$
 $e_Q \psi^{\dagger} \mathbf{r} \cdot \mathbf{e} \mathbf{E} \psi + \cdots$
Magnetic
M1
 $\frac{c_F e_Q}{2m_Q} \psi^{\dagger} \boldsymbol{\sigma} \cdot e \mathbf{B} \psi$
spin flip power counting $\frac{\mathbf{k}}{m_Q} \sim v^2$

Applying Multipole Expansion to Hadronic Transitions

For lowest order gluon emission:

Gottfried

 π

for dressed fields $\psi' = U^{-1}\psi$, $\mathbf{t}^{\mathbf{a}}\mathbf{A}_{\mathbf{a}}^{\prime\mu} = U^{-1}\mathbf{t}^{\mathbf{a}}\mathbf{A}_{\mathbf{a}}^{\mu}U - \frac{i}{g}U^{-1}\partial^{\mu}U$ But single emission takes color singlet S state (S) to unphysical octet state (O).

Double transitions dominate: E1-E1, E1-M1, M1-M1, E1-M2, ...

 $\begin{array}{lll} \mbox{Factorization:} & \delta_{ab} & & & \\ \mbox{E1-E1} & \frac{g_E^2}{8} < B | {\bf r}_i g t^a \mathcal{G} {\bf r}_j g t^b | A > & < \pi \pi | {\bf E}_a^i {\bf E}_b^i | {\bf 0} > & & \\ \mbox{electric polarizability} & \mbox{chiral methods} & & \\ \mbox{Brown & Cahn, B} & & & \\ \mbox{model} & \mathcal{G} = ({\rm E}_{\rm A} - \mathcal{H}_{\rm NR}^0)^{-1} = \sum_{\rm KL} \frac{|{\rm KL} > < {\rm KL}|}{{\rm E}_{\rm A} - {\rm E}_{\rm KL}} & (Q\bar{Q} \text{ octet}) & & \\ \mbox{Kuang & Yan} & & \\ \mbox{quark confining string} & \end{array}$

Other Approaches

• Lattice

Direct calculation – Extrapolate to $Q^2=0$.

Dudek, Edwards, Richards [PR D73:074507 (2007)]

• pNRQCD

Systematic Effective Lagrangian approach. Higher states an issue

• HQET+ChET

Model independent symmetry relations. Incorporated in MPE approach. (Vairo's talk)

See review: Heavy Quarkonium Physics Cern-2005-005

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY October 17-20, 2007

Photon Transitions

S states -> P states

E. Eichten

- Generally good agreement with NRMPE 0
- Relativistic corrections 10%-20% effects 0 in cc system.
- Need better theoretical guidance. 0

QWG -- 5th International Workshop on Heavy Quarkonia

 $2^{3}S_{1} \rightarrow 1^{3}P_{J}$ (bb)

 \mathcal{E}_{if}

 $c\bar{c}$ $< v^2 >$ State <> (fm) J/ψ 0.32 0.26 $\chi_c(1P)$ 0.24 0.57 $\psi(2S)$ 0.29 0.70 $\psi(3770)$ 0.780.28 $b\bar{b}$ $< v^2 >$ State > (fm)<0.091 $\Upsilon(1S)$ 0.19 $\chi_b(1P)$ 0.350.072 $\Upsilon(2S)$ 0.086 0.44 $\Upsilon(1D)$ 0.500.080 $\chi_b(2P)$ 0.560.089 $\Upsilon(3S)$ 0.630.100 $\Upsilon(4S)$ 0.800.116

$3^{3}S_{1} \rightarrow 2^{3}P_{J}$ (bb)

DESY October 17-20, 2007

E. Eichten

QWG -- 5th International Workshop on Heavy Quarkonia

$3^{3}S_{1} \rightarrow 1^{3}P_{J}$ transition dynamically suppressed. 0 Rate very sensitive to relativistic corrections.

 $\mathcal{E}(3^3 S_1, 1^3 P_0) = 0.067 \pm 0.012 \text{ GeV}^{-1}$ $< \mathcal{E}(3^3 S_1, 1^3 P_J) >_J = 0.050 \pm 0.006 \text{ GeV}^{-1}$ GI Model $J = (2, 1, 0) \qquad (0.097, 0.045, -0.015)$

nP -> mS transitions. Generally good agreement 0 with NR predictions. Again better theoretical control for relativistic corrections needed

Fina	al Predicted	${\mathcal B}$ Measured ${\mathcal B}$
Level stat	(%) (2)	(%) (12)
$2^{3}P_{0} \gamma + 1$	1S = 0.96	0.9 ± 0.6
$\gamma + 2$	2S 1.27	4.6 ± 2.1
$2^3P_1 \gamma + 1$	1S 11.8	8.5 ± 1.3
$\gamma + 2$	2S 20.2	21 ± 4
$2^3P_2 \gamma + 1$	1S = 5.3	7.1 ± 1.0
$\gamma + 2$	2 <i>S</i> 18.9	16.2 ± 2.4

Exp

Table 1: Cancellations in \mathcal{E}_{if} by node regions.

bb	initial state node			
Transition	< 1	$1 \ {\rm to} \ 2$	2 to 3	total
$2S \rightarrow 1P$	0.07	-1.68		-1.61
$3S \rightarrow 2P$	0.04	-0.12	-2.43	-2.51
$3S \rightarrow 1P$	0.04	-0.63	0.65	0.06

DESY October 18, 2007

	$\Gamma(\psi(37$	$(770) \rightarrow \gamma$	χ_{cJ}) in keV
	J=2	J = 1	J = 0
Our results CLEO	< 21	70 ± 17	172 ± 30
[PR D74 (2006) 031106]			
Rosner (non-relativistic) $[7]$	24 ± 4	73 ± 9	523 ± 12
Ding-Qin-Chao [6]			
non-relativistic	3.6	95	312
relativistic	3.0	72	199
Eichten-Lane-Quigg [8]			
non-relativistic	3.2	183	254
with coupled-channels corrections	3.9	59	225
Barnes-Godfrey-Swanson [9]			
non-relativistic	4.9	125	403
relativistic	3.3	77	213

		$\chi_{cJ} ightarrow J/\psi + \gamma$					
J	theory	E835	PDG				
2	$a_2 \approx -\frac{\sqrt{5}}{3} \frac{k}{4m_c} (1+\kappa_c)$	$-0.093^{+0.039}_{-0.041} \pm 0.006$	-0.140 ± 0.006				
2	$a_3 \approx 0$	$0.020^{+0.055}_{-0.044}\pm0.009$	$0.011\substack{+0.041\\-0.033}$				
1	$a_2 \approx -\frac{k}{4m_c}(1+\kappa_c)$	$0.002 \pm 0.032 \pm 0.004$	$-0.002^{+0.008}_{-0.017}$				
J	$\psi' \to \chi_{cJ} + \gamma$ theory						
2	$a_2 \approx -\frac{\sqrt{3}}{2\sqrt{10}} \frac{k}{m_c} \left[(1+\kappa_c)(1+\frac{\sqrt{2}}{5}X) - i\frac{1}{5}X \right] / \left[1 - \frac{1}{5\sqrt{2}}X \right]$						
2	$a_3 \approx -\frac{12\sqrt{2}}{175} \frac{k}{m_c} X[1 + \frac{3}{8}Y] / [1 - \frac{1}{5\sqrt{2}}X]$						
1	$a_2 \approx -\frac{k}{4m_c} [(1+\kappa_c)(1$	$+\frac{2\sqrt{2}}{5}X) + i\frac{3}{10}X]/[1+$	$-\frac{1}{\sqrt{2}}X]$				

ψ(3770)-> 1³P_J transitions:
 Can study relativistic effects including coupling to decay channels.

ψ'(2S) -> 1³P_J -> J/ψ transitions:
 Can study size of higher multipole terms M2 and E3.

M1 Transitions – S States

• Basics

$$\Gamma(i \xrightarrow{\mathrm{M1}} f + \gamma) = \frac{4\alpha e_Q^2}{3m_Q^2} (2J_f + 1)k^3 [\mathcal{M}_{if}]^2$$

$$\Gamma(J/\psi \to \eta_c \gamma) = \frac{16}{3} \alpha e_c^2 \frac{k_\gamma^3}{M_{J/\psi}^2} (1 + \kappa_c) [1 + o(v^2)]$$

$$\mathcal{M}_{if} = \int r^2 dr \, R_{n_i \mathcal{L}_i}(r) j_0(\frac{rk}{2}) R_{n_f \mathcal{L}_f}(r)$$

$$j_0 = 1 - (kr)^2/24 + \dots, \text{ so in NR limit}$$

$$k = 0: \quad \mathcal{M}_{if} = 1 \quad n_i = n_f; L_i = L_f$$

$$= 0 \quad \text{otherwise}$$

 $1.19\pm0.33~\rm keV$

Exp [CUSB]

• LQCD
$$\Gamma(J/\psi \rightarrow \eta_c + \gamma) = 2.0 \pm 0.1 \pm 0.4$$

Dudek, Edwards, Richards [PR D73:074507 (2007)]

• pNRQCD

Model independent – completely accessible by perturbation theory to $o(v^2)$

 $\Gamma(J/\psi \to \eta_c \gamma) = \frac{16}{3} \alpha e_c^2 \frac{k_{\gamma}^3}{M_{J/\psi}^2} \left[1 + C_F \frac{\alpha_s(M_{j/\psi}/2)}{\pi} + \frac{2}{3} (C_F \alpha_s(p_{J/\psi}))^2 \right]$

Brambilla, Jia & Vairo [PR D73:054005 (2006)]

No large anomalous magnetic moment No scalar long range interaction

 $\Gamma(J/\psi \rightarrow \eta_c \gamma) = (1.5 \pm 1.0) \text{ keV}.$

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY October 18, 2007

- Hindered M1 transitions
 - $\Upsilon(3S) \rightarrow \eta_b$ and $\Upsilon(2S) \rightarrow \eta_b$

- Phenomenological model results vary greatly due to poorly understood relativistic corrections.
- pNRQCD expectation

CLEO < 0.14 keV (90%c.l.)

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia

DESY October 18, 2007

Hadronic Transitions Two pion transitions

S state -> S state

$$d\Gamma \sim K \sqrt{1 - \frac{4m_{\pi}^2}{M_{\pi\pi}^2}} (M_{\pi\pi}^2 - 2m_{\pi}^2)^2 \ dM_{\pi\pi}^2 \qquad K \equiv \frac{\sqrt{(M_A + M_B)^2 - M_{\pi\pi}^2} \sqrt{(M_A - M_B)^2 - M_{\pi\pi}^2}}{2M_A}$$
$$\Gamma = G \ |\alpha_{AB}^{EE} \ C_1|^2$$
$$Phase Space \qquad Overlap - Vibrating String Model$$

BES

 $\psi' \to J/\psi + \pi^+\pi^-$

D state -> S state

Determines

 $C_2/C_1 = 1.52^{+0.35}_{-0.45}$ CLEO

FIG. 4: Distributions in $\pi^+\pi^-\ell^+\ell^-$ events of the $\pi^+\pi^-$ mass (left) and polar angle (right) of the positively charged lepton from data (open circles) and MC (solid line line).

P state -> P state

Assume only S wave term => J = J'

 $\Gamma_{\pi\pi} = (0.83 \pm 0.22 \pm 0.08 \pm 0.19) \text{ keV}$

CLEO [PR D73, 012003 (2006)]

 $2P_J \rightarrow 1P_{J'} + 2\pi$ - First observation[CLEO] Results agree with Kuang and Yan (1988)

Transition	1	$m_{\pi\pi}^{(\max)}$	Branching Fraction	Partial Width ¹	
$i \to f$	+ X	(MeV)	(%)	(keV)	
$\psi(2S) \to J/\psi$	$\pi^+\pi^-$	589	$33.54 \pm 0.14 \pm 1.10$	113.0 ± 8.4	$\Rightarrow C_1 = 8.87 \times 10^{-3}$
	$\pi^0\pi^0$		$16.52 \pm 0.14 \pm 0.58$	55.7 ± 4.1	(BT potential)
$\psi(3770) \rightarrow J/\psi$	$\pi^+\pi^-$	676	$(1.89 \pm 0.20 \pm 0.20) \times 10^{-1}$	43.5 ± 11.5	+0.35
	$\pi^0\pi^0$		$(0.80 \pm 0.25 \pm 0.16) \times 10^{-1}$	18.4 ± 9.8	$\Rightarrow C_2 / C_1 = 1.52_{-0.45}$

Table 4: Two pion transitions observed in the $c\bar{c}$ system.

Table 5: Two pion transitions observed in the $b\bar{b}$ system.

Transi	ition	$m_{\pi\pi}^{(\max)}$	Branching Fraction	Partial Width ²	Rescaled Kuana & Yan model
$i \rightarrow f$	+ X	(MeV)	(%)	(keV)	
$\Upsilon(2S) \to \Upsilon(1S)$	S) $\pi^+\pi^-$	563	18.8 ± 0.6	6.0 ± 0.5	304
	$\pi^0\pi^0$		9.0 ± 0.8	2.6 ± 0.2	5 7.4
$\Upsilon(3S) \to \Upsilon(1S)$	S) $\pi^+\pi^-$	895	4.48 ± 0.21	0.77 ± 0.06	314
	$\pi^0\pi^0$		2.06 ± 0.28	0.36 ± 0.06	J - · · ·
$\Upsilon(3S) \to \Upsilon(2S)$	S) $\pi^+\pi^-$	332	2.8 ± 0.6	0.48 ± 0.12	306
	$\pi^0\pi^0$		2.00 ± 0.32	0.35 ± 0.07	5 0.0
$\Upsilon(4S) \to \Upsilon(1S)$	S) $\pi^+\pi^-$	1120	$(0.90 \pm 0.15) \times 10^{-2}$	1.8 ± 0.4	
$\Upsilon(4S) \to \Upsilon(2S)$	S) $\pi^+\pi^-$	557	$(0.83 \pm 0.16) \times 10^{-2}$	1.7 ± 0.5	
$\chi_{b2}(2P) \to \chi_{b2}$	$_{2}(1P) \mid \pi^{+}\pi^{-}$	356	$(6.0 \pm 2.1) \times 10^{-1}$	0.83 ± 0.32	0.6
$\chi_{b1}(2P) \to \chi_{b1}$	$(1P) \mid \pi^+\pi^-$	363	$(8.6 \pm 3.1) \times 10^{-1}$	0.83 ± 0.32	0.6

Model generally in good agreement with experiment

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia

Belle

 $\Upsilon(4S) \rightarrow \Upsilon(1S)$ is consistent with Brown-Cahn model.

Puzzle:

 $\Upsilon(3S) \rightarrow \Upsilon + \pi \pi$ don't show leading (S-wave) two $\Upsilon(4S) \rightarrow \Upsilon(2S) + \pi \pi$ pion invariant mass distribution

Many proposals for explaining the $\Upsilon(3S)$ -> Υ transition but most don't survive results for $\Upsilon(4S)$:

Final State Interactions

Problem: Compare Y(4S)->Y(2S), Y(2S)->Y(1S) and ψ(2S) -> J/ψ essentially the same phase space but different distributions.
◇ coupling to decay channels
Problem: Compare Y(3S)->Y(1S) to ψ(2S)->J/ψ, Y(4S)->Y(1S)
Coupled channel effects should be larger in second set.
◇ 4 quark intermediate state
Problem: Compare Y(4S)->Y(2S), Y(3S)->Y(1S)
similiar distributions but shifted masses
◇ dynamical accident - suppress the leading E1 E1 term

Worth a closer look.

Hybrid States and Lattice QCD

Heavy quark limit:

Born-Oppenheimer approximation

$$-\frac{1}{2\mu}\frac{d^2u(r)}{dr^2} + \left\{\frac{\langle \boldsymbol{L}_{Q\bar{Q}}^2\rangle}{2\mu r^2} + V_{Q\bar{Q}}(r)\right\}u(r) = E \ u(r)$$

Spectroscopic notation of diatomic molecules

$$P = \varepsilon(-1)^{L+\Lambda+1}, \qquad C = \eta \varepsilon(-1)^{L+S+\Lambda}.$$

 Λ = 0, 1, 2, ... denoted $\Sigma,$ $\Pi,$ $\Delta,$...

 $\Psi_{Q\bar{Q}}(\vec{r}) = \frac{u_{nl}(r)}{r} Y_{lm}(\theta, \phi)$ $J = L + S, \quad S = s_Q + s_{\bar{Q}}, \quad L = L_{Q\bar{Q}} + J_{\bar{s}}$ $\langle L_r J_{gr} \rangle = \langle J_{gr}^2 \rangle = \Lambda^2$ $\langle L_{Q\bar{Q}}^2 \rangle = L(L+1) - 2\Lambda^2 + \langle J_g^2 \rangle.$ $< J_g^2 \ge 0, 2, 6, \dots$

 η = ±1 (symmetry under combined charge conjugation and spatial inversion) denoted g(+1) or u(-1) $|LSJM;\lambda\eta\rangle + \varepsilon |LSJM;-\lambda\eta\rangle$ with ε =+1 for Σ^+ and ε =-1 for Σ^- both signs for Λ >0. $V_{Q\bar{Q}}(r)$

Short distance: Perturbative QCD, pNRQCD singlet: $-4/3 \alpha_s /r$ octet : $2/3 \alpha_s /r$ gluelumps

Large distance: String $\sigma r + \pi N/r$ NG string behavour

For cc and bb systems neither is adequate.

 $V_{QQ}(r)$ determined by direct lattice calculations

Operators for excited gluon states

TABLE I: Operators to create excited gluon states for small $q\bar{q}$ separation R are listed. **E** and **B** denote the electric and magnetic operators, respectively. The covariant derivative **D** is defined in the adjoint representation [10].

gluon state	J	operator
Σ_g^+	1	$\mathbf{R} \cdot \mathbf{E}, \mathbf{R} \cdot (\mathbf{D} \times \mathbf{B})$
Π_g	1	$\mathbf{R} \times \mathbf{E}, \mathbf{R} \times (\mathbf{D} \times \mathbf{B})$
Σ_u^-	1	$\mathbf{R} \cdot \mathbf{B}, \mathbf{R} \cdot (\mathbf{D} imes \mathbf{E})$
Π_u	1	$\mathbf{R} imes \mathbf{B}, \mathbf{R} imes (\mathbf{D} imes \mathbf{E})$
Σ_{g}^{-}	2	$(\mathbf{R} \cdot \mathbf{D})(\mathbf{R} \cdot \mathbf{B})$
Π'_{g}	2	$\mathbf{R} imes ((\mathbf{R} \cdot \mathbf{D}) \mathbf{B} + \mathbf{D} (\mathbf{R} \cdot \mathbf{B}))$
Δ_g	2	$(\mathbf{R} imes \mathbf{D})^i (\mathbf{R} imes \mathbf{B})^j + (\mathbf{R} imes \mathbf{D})^j (\mathbf{R} imes \mathbf{B})^i$
Σ_u^+	2	$(\mathbf{R} \cdot \mathbf{D})(\mathbf{R} \cdot \mathbf{E})$
Π'_u	2	$\mathbf{R} imes ((\mathbf{R} \cdot \mathbf{D}) \mathbf{E} + \mathbf{D} (\mathbf{R} \cdot \mathbf{E}))$
Δ_u	2	$(\mathbf{R} \times \mathbf{D})^i (\mathbf{R} \times \mathbf{E})^j + (\mathbf{R} \times \mathbf{D})^j (\mathbf{R} \times \mathbf{E})^i$

FIG. 2: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

K.J. Juge, J. Kuti and C. Morningstar [PRL 90, 161601 (2003)]

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia

Like the E1 case ? $\Delta n = 2$ overlap suppressed. Predicted for $\Upsilon(3S) \rightarrow \Upsilon(1S)$

Below lowest intermediate state threshold

$$\sum_{nl} \frac{|\Psi_{nl}\rangle \langle \Psi_{nl}|}{E_i - E_{nl}} \sim \frac{1}{E_i - E_{\text{string}}^{\text{TH}}} + \cdots$$

Hence transition rates fairly insensitive to intermediate states details

Transition	G	$ < i r^2 f > $	$G < i r^2 f >^2$
	$({\rm GeV}^7)$	(GeV^{-2})	$ imes 10^2$
$\psi(2S) \to J/\psi$	3.56×10^{-2}	3.36	40.2
$\Upsilon(2S) \to \Upsilon(1S)$	2.87×10^{-2}	1.19	4.06
$\Upsilon(3S) \to \Upsilon(1S)$	1.09	2.37×10^{-1}	0.61
$\Upsilon(3S) \to \Upsilon(2S)$	9.09×10^{-5}	3.70	0.12
$\Upsilon(4S) \to \Upsilon(1S)$	5.58	9.74×10^{-2}	0.48
$\Upsilon(4S) \to \Upsilon(2S)$	2.61×10^{-2}	4.64×10^{-1}	0.56

Note the large variations in phase space and overlaps for the various Υ states.

3. The rate for $\Upsilon'' \rightarrow \Upsilon \pi \pi$ is surprisingly small. If we compare the phase-space integrals (2.4) for the two transitions $\Upsilon'' \rightarrow \Upsilon \pi \pi$ and $\Upsilon' \rightarrow \Upsilon \pi \pi$, their ratio is large,

$$\frac{G(\Upsilon' \to \Upsilon \pi \pi)}{G(\Upsilon' \to \Upsilon \pi \pi)} \approx 33 . \qquad (2.24)$$

The matrix element for $\Upsilon'' \rightarrow \Upsilon \pi \pi$ is tremendously suppressed:

$$\left| \frac{f_{if}^{1}(\Upsilon' - \Upsilon \pi \pi)}{f_{if}^{1}(\Upsilon' - \Upsilon \pi \pi)} \right|^{2} \approx (2 - 4) \times 10^{-3} .$$
 (2.25)

The large suppression is due to two effects. First, there is a great deal of cancellation among different terms in the series for $f_{if}^1(\Upsilon'' \to \Upsilon \pi \pi)$. Second, many high vibrational levels contribute, so the mean distance from these levels to Υ'' is large. Because of the delicate cancellations, we cannot expect our results to be very reliable.

Kuang & Yan (1981)

E. Eichten

QWG -- 5th International Workshop on Heavy Quarkonia

Model results:

 $M(Σ_g^{+'}(1P)) ≈ 4.55 (c\overline{c})$ 10.80 (bb)

Full overlap calculations gives:

$\Sigma_{q}^{+'}(nP)$	(M(n) - M(n-1))	< r >	$< v^2 >$
n	$({ m MeV})$	(fm)	
$c\bar{c}$ 1	-	0.85	0.37
2	360	1.20	0.74
<i>bb</i> 1	-	0.45	0.09
2	300	0.64	0.18
3	265	0.80	0.25
4	240	0.96	0.31
5	225	1.09	0.37

$$\mathcal{F}(\text{full}) = \sum_{n} \langle i | r | X(n) \rangle \langle X(n) | r | f \rangle \frac{E_i - E_{X(0)}}{E_i - E_{X(n)}}$$

Transition	$ \mathcal{F} (\text{full})$
	(GeV^{-2})
$\psi(2S) \to J/\psi$	3.82
$\Upsilon(2S) \to \Upsilon(1S)$	1.37
$\Upsilon(3S) \to \Upsilon(1S)$	1.33×10^{-1}
$\Upsilon(3S) \to \Upsilon(2S)$	3.70
$\Upsilon(4S) \to \Upsilon(1S)$	1.17×10^{-1}
$\Upsilon(4S) \to \Upsilon(2S)$	2.71×10^{-1}

	$<\Sigma_{g}^{+'}(mP) r \Upsilon(nS)>(\mathrm{GeV}^{-1})$						
n	m = 1	m = 2	m = 3	m = 4	m = 5		
1	0.874	0.460	0.283	0.196	0.142		
2	-2.12	0.871	0.481	0.291	0.196		
3	0.811	-3.14	0.99	0.531	0.314		
4	0.082	1.23	-3.98	1.14	0.585		

If leading <E1-E1> suppressed, can the <M1-M1> significant?

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY October 18, 2007

Detailed study: S-wave

Voloshin [PR D74:054022(2006)]

$$\mathcal{M} = S\left(\epsilon_1 \cdot \epsilon_2\right) + D_1 \,\ell_{\mu\nu} \,\frac{P^{\mu}P^{\nu}}{P^2} \left(\epsilon_1 \cdot \epsilon_2\right) + D_2 \,q_{\mu} \,q_{\nu} \,\epsilon^{\mu\nu} + D_3 \,\ell_{\mu\nu} \,\epsilon^{\mu\nu} \,.$$
S-wave

$$S(\psi_2 \to \pi^+ \pi^- \psi_1) =$$

$$-\frac{4\pi^2}{b} \alpha_0^{(12)} \left[(1 - \chi_M) \left(q^2 + m^2 \right) - (1 + \chi_M) \kappa \left(1 + \frac{2m^2}{q^2} \right) \left(\frac{(q \cdot P)^2}{P^2} - \frac{1}{2} q^2 \right) \right] \left(\psi_1 \cdot \psi_2 \right) ,$$
(25)

and three D-waves $P_{\mu} = M_A \delta^0_{\mu}$ $r_{\mu} = (k_{1\mu} - k_{2\mu})$

$$\begin{split} D_1(\psi_2 \to \pi^+ \pi^- \psi_1) &= -\frac{4\pi^2}{b} \,\alpha_0^{(12)} \left(1 + \chi_M\right) \frac{3\kappa}{2} \,\frac{\ell_{\mu\nu} P^\mu P^\nu}{P^2} \left(\psi_1 \cdot \psi_2\right) \,, & \text{spin independent} \\ D_2(\psi_2 \to \pi^+ \pi^- \psi_1) &= \frac{4\pi^2}{b} \,\alpha_0^{(12)} \,\left(\chi_2 + \frac{3}{2} \,\chi_M\right) \,\frac{\kappa}{2} \,\left(1 + \frac{2m^2}{q^2}\right) \,q_\mu q_\nu \psi^{\mu\nu} \\ D_3(\psi_2 \to \pi^+ \pi^- \psi_1) &= \frac{4\pi^2}{b} \,\alpha_0^{(12)} \,\left(\chi_2 + \frac{3}{2} \,\chi_M\right) \,\frac{3\kappa}{4} \,\ell_{\mu\nu} \psi^{\mu\nu} & \text{spin dependent} \\ D_3(\psi_2 \to \pi^+ \pi^- \psi_1) &= \frac{4\pi^2}{b} \,\alpha_0^{(12)} \,\left(\chi_2 + \frac{3}{2} \,\chi_M\right) \,\frac{3\kappa}{4} \,\ell_{\mu\nu} \psi^{\mu\nu} & \text{magnetic} & \text{S-D mixing} \end{split}$$

$$\begin{split} \psi^{\mu\nu} &= \psi_1^{\mu}\psi_2^{\nu} + \psi_1^{\nu}\psi_2^{\mu} - (2/3)\left(\psi_1 \cdot \psi_2\right)\left(P^{\mu}P^{\nu}/P^2 - g^{\mu\nu}\right) & \chi_M = \frac{\alpha_M}{\alpha_0} , \qquad \chi_2 = \frac{\alpha_2}{\alpha_0} \\ \ell_{\mu\nu} &= r_{\mu}r_{\nu} + \frac{1}{3}\left(1 - \frac{4m^2}{q^2}\right)\left(q^2 g_{\mu\nu} - q_{\mu}q_{\nu}\right) & \mathsf{O}(\mathsf{v}^2) & \mathsf{O}(\mathsf{v}^2) \end{split}$$

If <M1-M1> term significant, expect noticeable presence of D2 and D3 in $\Upsilon(3S) = \Upsilon + \pi\pi$

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia

BUT – In addition to the suppression of the M1–M1 term by <v²> relative to the dominate E1–E1 term:

Radial overlap amplitude:

 $\sum_{n,l} \frac{\langle f|\Psi_{nl}\rangle \rangle \langle \Psi_{nl}|i\rangle}{E_i - E_{X(nl)}}$

with the hybrid states

$$\Psi_{nl} = \Pi_u^+(nP)$$

Again below lowest intermediate state threshold

$$\sum_{nl} \frac{|\Psi_{nl}\rangle \langle \Psi_{nl}|}{E_i - E_{nl}} \sim \frac{1}{E_i - E_{\text{string}}^{\text{TH}}} + \cdots$$

In this limit the overlap vanishes since $\langle f|i \rangle = 0$ (i $\neq f$)

A complete calculation yields:

Transition	$ \mathcal{F} (\mathrm{full})$
	(GeV^{-2})
$\psi(2S) \to J/\psi$	1.81×10^{-1}
$\Upsilon(2S) \to \Upsilon(1S)$	3.04×10^{-1}
$\Upsilon(3S) \to \Upsilon(1S)$	1.70×10^{-1}
$\Upsilon(3S) \to \Upsilon(2S)$	1.74×10^{-1}
$\Upsilon(4S) \to \Upsilon(1S)$	1.06×10^{-1}
$\Upsilon(4S) \to \Upsilon(2S)$	0.92×10^{-1}

	$< \Pi_u^+(mP) r \Upsilon(nS) > (\text{GeV}^{-1})$						
n	m = 1	m = 2	m = 3	m = 4	m = 5		
1	0.705	0.470	0.346	0.274	0.226		
2	-0.851	0.358	0.306	0.239	0.200		
3	: 0.027	-0.934	0.263	0.254	0.199		
4	-0.006	0.024	-0.968	0.220	0.227		

The M1-M1 term is highly suppressed !

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY Oct

E. Eichten

QWG -- 5th International Workshop on Heavy Quarkonia

DESY October 18, 2007

 $QQ(n^{3}S_{1}) \rightarrow QQ(m^{3}S_{1}) + \pi^{+}\pi^{-}$

 $M = \mathbf{A}(\varepsilon' \cdot \varepsilon)(q^2 - 2m_{\pi}^2) + \mathbf{B}(\varepsilon' \cdot \varepsilon)E_1E_2 + \mathbf{C}\left[(\varepsilon' \cdot q_1)(\varepsilon \cdot q_2) + (\varepsilon' \cdot q_2)(\varepsilon \cdot q_1)\right]$

- Hindered M1-M1 term => $C \approx 0$. Consistent with CLEO results.
- Small D-wave contributions
- Useful to look at polarization info.

Dubynskiy & Voloshin [hep-ph/0707.1272]

35->15

CLEO [hep-ex/0706.2317]

Fit, No \mathcal{C}			stat.	effcy. (π^{\pm})	effcy. (π^0)	bg. sub.
$\Upsilon(2S) \rightarrow \Upsilon(1S) \pi \pi$	$\Re(\mathcal{B}/\mathcal{A})$	-2.523	± 0.031	± 0.019	± 0.011	± 0.001
$1(33) \rightarrow 1(13)\%\%$	$\Im(\mathcal{B}/\mathcal{A})$	± 1.189	± 0.051	± 0.026	± 0.018	± 0.015
$\Upsilon(\mathbf{n} \mathbf{C}) = \Upsilon(1 \mathbf{C}) = -$	$\Re(\mathcal{B}/\mathcal{A})$	-0.753	± 0.064	± 0.059	± 0.035	± 0.112
$I(2D) \rightarrow I(1D) / / /$	$\Im(\mathcal{B}/\mathcal{A})$	0.000	± 0.108	± 0.036	± 0.012	± 0.001
$\Upsilon(3S) \rightarrow \Upsilon(2S) \pi \pi$	$\Re(\mathcal{B}/\mathcal{A})$	-0.395	± 0.295		± 0.025	± 0.120
$1(33) \rightarrow 1(23) \pi \pi$	$\Im(\mathcal{B}/\mathcal{A})$	± 0.001	± 1.053		± 0.180	± 0.001
Fit, float \mathcal{C}			stat.	effcy. (π^{\pm})	effcy. (π^0)	bg. sub.
$\Upsilon(2S) \rightarrow \Upsilon(1S) \pi \pi$	$ \mathcal{B}/\mathcal{A} $	2.89	± 0.11	± 0.19	± 0.11	± 0.027
$I(33) \rightarrow I(13)$	$ \mathcal{C}/\mathcal{A} $	0.45	± 0.18	± 0.28	± 0.20	± 0.093

E. Eichten

QWG -- 5th International Workshop on Heavy Quarkonia

DÉSY October 18, 2007

Single light hadron transitions

higher order <El Ml>; <Ml Ml>, <El M2> $C_i C_f = -1$ +1 O(v) $O(v^2)$

symmetry breaking: π ; η , ω $\tilde{\pi}^0 = \pi^0 + \epsilon \eta + \epsilon' \eta'$ $\tilde{\eta} = \eta - \epsilon \pi^0 + \theta \eta'$

$$\tilde{\eta}' = \eta' - \theta\eta - \epsilon' \pi^0,$$

Transition		Branching Fraction 3	Partial Width
$i \rightarrow f$ -	+ X	(%)	(keV)
$\psi(2S) \to J/\psi$	η	$3.25 \pm 0.06 \pm 0.11$	11.0 ± 0.84
	π^0	$0.13 \pm 0.01 \pm 0.01$	0.44 ± 0.06
$\psi(2S) \to h_c(1P)$	π^0	$(1.0 \pm 0.2 \pm 0.18) \times 10^{-1}$	0.34 ± 0.10
$\psi(3770) \to J/\psi$	η	$(0.87 \pm 0.33 \pm 0.22) \times 10^{-1}$	20 ± 11

Transition		Branching Fraction	Partial Width 4	
$i \rightarrow f + X$		(%)	(keV)	
$\Upsilon(2S) \to \Upsilon(1S)$	η	$(2.5 \pm 0.7 \pm 0.5) \times 10^{-2}$	$(7.2 \pm 2.3) \times 10^{-3}$	
$\chi_{b1}(2P) \to \Upsilon(1S)$	ω	$1.63 \pm 0.33 \pm 0.16$	1.56 ± 0.59	
$\chi_{b2}(2P) \to \Upsilon(1S)$	ω	$1.10 \pm 0.30 \pm 0.11$	1.52 ± 0.64	

chiral effective theory:

$$\epsilon = \frac{(m_d - m_u)\sqrt{3}}{4(m_s - \frac{m_u + m_d}{2})}, \quad \epsilon' = \frac{\tilde{\lambda}(m_d - m_u)}{\sqrt{2}(m_{\eta'}^2 - m_{\pi^0}^2)}, \quad \theta = \sqrt{\frac{2}{3}} \frac{\tilde{\lambda}\left(m_s - \frac{m_u + m_d}{2}\right)}{m_{\eta'}^2 - m_{\eta}^2}.$$

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia

XYZ hadronic transitions

• Many new states :

(Round table Friday 17:35)

State	EXP	M + i Γ (MeV)	J ^{PC}	Decay Modes Observed	Production Modes Observed
X(3872)	Belle,CDF, DO, Cleo, BaBar	3871.2±0.5 + i(<2.3)	1++	π⁺π⁻Ϳ/Ψ, π⁺π⁻π⁰Ϳ/Ψ, ϓͿ/Ψ	B decays, ppbar
	Belle BaBar	3875.4±0.7 ^{+1.2} -2.0 3875.6±0.7 ^{+1.4} -1.5		D ^o D ^o π ^o	B decays
Z(3930)	Belle	3929±5±2 + i(29±10±2)	2++	D ⁰ D ⁰ , D⁺D⁻	ΥΥ
Y(3940)	Belle BaBar	$3943\pm11\pm13 + i(87\pm22\pm26)$ $3914.3^{+3.8}_{-3.4}\pm1.6+ i(33^{+12}_{-8}\pm0.60)$	1	ωJ/ψ	B decays
X(3940)	Belle	3942 ⁺⁷ -6±6 + i(37 ⁺²⁶ -15±8)	J ^{₽+}	DD*	e⁺e⁻ (recoil against J/ψ)
Y(4008)	Belle	4008±40 ⁺⁷² -28 + i(226±44 ⁺⁸⁷ -79)	1	π⁺π⁻J/ψ	e⁺e⁻ (ISR)
X(4160)	Belle	4156 ⁺²⁵ -20±15+ i(139 ⁺¹¹¹ -61±21)	J [₽]	D*D*	B decays
Y(4260)	BaBar Cleo Belle	$4259\pm8^{+8}_{-6} + i(88\pm23^{+6}_{-4})$ $4284^{+17}_{-16}\pm4 + i(73^{+39}_{-25}\pm5)$ $4247\pm12^{+17}_{-32} + i(108\pm19\pm10)$	1	π⁺π⁻J/ψ, π⁰π⁰J/ψ, Κ⁺Κ⁻J/ψ	e⁺e⁻ (ISR), e⁺e⁻
Y(4350)	BaBar Belle	4324±24 + i(172±33) 4361±9±9 + i(74±15±10)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)
Z+(4430)	Belle	4433±4±1+ i(44 ⁺¹⁷ -13 ⁺³⁰ -11)	٦P	π⁺ψ(2S)	B decays
Y(4620)	Belle	4664±11±5 + i(48±15±3)	1	π⁺π⁻ψ(2S)	e⁺e⁻ (ISR)

E. Eichten QWG -- 5th International Workshop on Heavy Quarkonia DESY October 17-20, 2007

Comments for Hybrid Interpretations

• Information from hadronic transitions can be used to estimate decay rates for a hybrid 1⁻⁻ state (H) to a (QQ) state (ψ (nS)) + light hadrons.

• Branching ratios: $BR(H \rightarrow \psi' + \pi^+\pi^-)/BR(H \rightarrow J/\psi + \pi^+\pi^-)$ calculable.

 Mixing between (QQ) states and hybrid (QQg) states can be calculated using Lattice QCD.

New Belle Measurements - [hep-ex/0710.2577] $\Upsilon(5S) \rightarrow \pi^{+}\pi^{-} + \Upsilon(nS)$ (n=1,2,3)

Process	N_s	Σ	Eff.(%)	$\sigma({ m pb})$	$\mathcal{B}(\%)$	$\Gamma({ m MeV})$
$\Upsilon(1S)\pi^+\pi^-$	325^{+20}_{-19}	20σ	37.4	$1.61 \pm 0.10 \pm 0.12$	$0.53 \pm 0.03 \pm 0.05$	$0.59 \pm 0.04 \pm 0.09$
$\Upsilon(2S)\pi^+\pi^-$	186 ± 15	14σ	18.9	$2.35 \pm 0.19 \pm 0.32$	$0.78 \pm 0.06 \pm 0.11$	$0.85 \pm 0.07 \pm 0.16$
$\Upsilon(3S)\pi^+\pi^-$	$10.5^{+4.0}_{-3.3}$	3.2σ	1.5	$1.44^{+0.55}_{-0.45} \pm 0.19$	$0.48^{+0.18}_{-0.15}\pm0.07$	$0.52^{+0.20}_{-0.17}\pm0.10$
$\Upsilon(1S)K^+K^-$	$20.2^{+5.2}_{-4.5}$	4.9σ	20.3	$0.185^{+0.048}_{-0.041}\pm 0.028$	$0.061^{+0.016}_{-0.014}\pm0.010$	$0.067^{+0.017}_{-0.015}\pm0.013$

Large partial rates.
 Continuum e⁺e⁻-> ππΥ(nS)
 background not subtracted.

• $M(\pi\pi)$ and angular distribution. Compare to $\Upsilon(4S)$.

Transition Ratio	Belle
R(2,1)	$1.47 \pm 0.15 \pm 0.20$
R(3,1)	$0.91 \pm 0.35 \pm 0.15$

$$R(n,m) \equiv \frac{\Gamma(\Upsilon(5S) \to \pi^+\pi^- + \Upsilon(nS))}{\Gamma(\Upsilon(5S) \to \pi^+\pi^- + \Upsilon(mS))}$$

$$\begin{split} \Gamma(\Upsilon(5S) \to \pi^{+}\pi^{-} + \Upsilon(nS)) &\propto G(n)|f(n)|^{2} & \text{phase space (GeV^{-7})} \\ \text{with } f(n) &= \sum_{l} \frac{<\Upsilon(5S)|r|\Sigma_{g}^{+'}(lP) > < \Sigma_{g}^{+'}(lP)|r|\Upsilon(nS) >}{M_{\Upsilon(5S)} - E_{l}(\Sigma) + i\Gamma_{l}(\Sigma)} |^{2} & G(n) = 28.7, \ 0.729, \ 1.33 \times 10^{-2} \\ \text{for } n = 1, 2, 3 \end{split}$$

theory – hadronic transition rates

- If lowest hybrid mass near $\Upsilon(5S)$ a few states dominate sum. Results sensitive to mass value.
- If hybrid mass 10.75 + i(0.1) (GeV), obtain R(2,1)≈1.1 and R(3,1)≈0.08.
- Overall scale of transitions more than an order of magnitude larger than theory expects.

Summary

- In the presence of much more accurate data, multipole expansions for both electromagnetic and hadronic transitions hold up well.
- Significant relativistic corrections for the cc system. Reduced corrections for the bb system. Generally consistent with velocity scaling expectations:
- In puzzling transitions (below threshold), the leading order expansion coefficient is dynamically suppressed:
 - $\Upsilon(3S) \rightarrow \chi_b(1P)$ E1 rate Cancellations in overlap amplitude for states with nodes in their radial wavefunctions. Here nearly complete.
 - $\Upsilon(3S) \rightarrow \eta_b(1S)$, ... M1 transitions Hindered, so overlap is zero in leading order.

- $\Upsilon(3S) \rightarrow \Upsilon(1S) + 2\pi$, ... E1-E1 leading term dynamically suppressed. Small D-wave component in the two pion invariant mass distribution.
- For all $\Upsilon(nS) \rightarrow \Upsilon(mS) + 2\pi$, M1-M1 terms are dynamically suppressed relative to their natural $O(v^2)$ strength.
- The situation above threshold is not yet clear:
 - For any XYZ state that is a hybrid, its decays to quarkonium states may be related to the standard hadronic transitions.
 - The new Y(5S) -> Y(nS) + 2π (n=1,2,3) transitions reported by Belle are much larger than expected.
- Modern theoretical tools (effective theories and nonperturbative LQCD) combined with more detailed high statistics experimental data will help resolve these issues.