Doubly Heavy SUSY Mesons QWG 2007 at DESY Oct. 17-20, 2007

Chao-Hsi Chang (Zhao-Xi Zhang) ITP, AS, Beijing

Based on the works with J.K. Chen, J.Y. Cui, J.-M. Yang, X.G. Wu (EPJC 50: 969 (2007); Commun. Theor. Phys. 39:197 (2002)

Introduction

- General Feature
 - 1. Spectroscopy
 - 2. Decay and lifetime
 - 3. Fragmentation function

Production at Tevatron & LHC

Oct. 20, 2007

Introduction

Heavy flavors:

Light Quarks: u, d, s, (m <)Heavy Quarks: c, b, (t) (m >)The Lightest S-quark $\tilde{t_1} : (\tilde{t_L}, \tilde{t_R})$ or $\tilde{b_1} : (\tilde{b_L}, \tilde{b_R})$

SUSY-hadrons:

If the lightest s-quark e.g. \widetilde{t}_1 has

 $m_{\tilde{t}_1} \sim m_t \text{ (even } m_{\tilde{t}_1} \leq m_t \text{) and } \tau_{\tilde{t}_1} \geq \frac{1}{\Lambda_{QCD}} \text{ (not ruled out yet):}$

$$\begin{split} & (\widetilde{t_1} \overrightarrow{c}) : \widetilde{H}_{\widetilde{t}_1 \overrightarrow{c}}, \widetilde{H'}_{\widetilde{t}_1 \overrightarrow{c}}, \cdots \\ & (\widetilde{t_1} \overrightarrow{b}) : \widetilde{H}_{\widetilde{t}_1 \overrightarrow{b}}, \widetilde{H'}_{\widetilde{t}_1 \overrightarrow{b}}, \widetilde{H'}_{\widetilde{t}_1 \overrightarrow{b}}, \cdots \\ & (\widetilde{t_1} \overrightarrow{t_1}) : \widetilde{H}_{\widetilde{t_1} \widetilde{t_1}}, \widetilde{H'}_{\widetilde{t}_1 \widetilde{t_1}}, \widetilde{H'}_{\widetilde{t}_1 \widetilde{t_1}}, \cdots \\ & \cdots \\ & \cdots \\ & (\widetilde{t_1} cq) : \widetilde{\Xi}_{\widetilde{t}_1 cq}, \widetilde{\Xi'}_{\widetilde{t}_1 cq}, \cdots \\ & (\widetilde{t_1} bq) : \widetilde{\Xi}_{\widetilde{t}_1 \widetilde{b}q}, \widetilde{\Xi'}_{\widetilde{t}_1 \widetilde{b}q}, \cdots \\ & (\widetilde{t_1} \widetilde{t_1} q) : \widetilde{\Xi}_{\widetilde{t}_1 \widetilde{t}_1 q}, \widetilde{\Xi'}_{\widetilde{t}_1 \widetilde{t}_1 q}, \cdots \\ & \cdots \\ \end{split}$$

doubly heavy SUSY mesons

doubly heavy SUSY baryons

Introduction

- Here we focus on the doubly heavy SUSY mesons only and consider \tilde{t}_1 as an example.
- The interests:
 - QCD binding systems but an elementary 0-spin component (as a new platform for potential model, lattice QCD, NRQCD etc)
 non-relativistic nature (potential model, NRQCD etc)

spectroscopy & transitions

- S-quark (\tilde{t}_1) search & weak decay studies
- Heavy flavor physics (c, b decays; CKM matrix elements Vcb, Vcs, Vub, Vcd, etc)
- Production mechanism studies (hadro-production)
- etc.

Oct. 20, 2007

Introduction

Why 'doubly heavy SUSY mesons'?

- A two-body binding system of doubly heavy components by QCD interaction (in non-relativistic nature and with a 0-spin component instead of a 1/2-spin one to compare with doubly heavy mesons) thus
 - potential model, lattice QCD for spectroscopy,
 - NRQCD can be applied to production and decays
 - theoretical predictions can be more reliable etc.
- in comparison

' heavy-light SUSY mesons' such as $(\widetilde{t}_1,q), (q=u,\,d,\,s)$

a light quark is involved (relativistic nature) more non-perturbative effects due to the light quark etc theoretical predictions for production cannot be very reliable

1. Spectroscopy (here QCD inspired potential model) Potential: $G(P,q,k) = G_{short}(P,q,k) + G_{long}(P,q,k)$

 $\text{`short distance' } \mathbf{G}_{\text{short}}$ $\frac{p_{1}}{p_{2}} \qquad p_{3} \\ p_{4} \qquad p_{1} \qquad p_{2} \qquad p_{3} \\ p_{2} \qquad p_{4} \qquad p_{4} \qquad p_{2} \qquad p_{4} \qquad$

'long distance' G_{long}

$$G_{long}(P,q,k) = (2\pi)^3 (2m_2) \{ \frac{\lambda}{\alpha} \delta^3(\mathbf{q}-\mathbf{k}) - \frac{\lambda}{\pi^2} \frac{1}{((\mathbf{q}-\mathbf{k})^2 + \alpha^2)^2} \}$$

 G_{long} corresponds to

$$\frac{\lambda}{\alpha}(1-e^{-\alpha r})$$

Parameters:

 Λ_{QCD}, a, α fixed by fitting the spectrum of the heavy quarkonia $(Q\bar{Q})$:

	Calculated	Observed[9]
$1 {}^{1}S_{0}(c\bar{c})$	2.960	2.9788 ± 0.0019
$1 {}^{3}S_{1}(c\bar{c})$	3.100	3.09688 ± 0.00004
$2 {}^{1}S_{0}(c\bar{c})$	3.616	
$2 {}^{3}S_{1}(c\bar{c})$	3.666	3.6800 ± 0.00010
$1 {}^{1}S_{0}(b\bar{b})$	9.421	
$1 \ {}^{3}S_{1}(b\bar{b})$	9.463	9.46037 ± 0.00021
$2 {}^{1}S_{0}(b\bar{b})$	9.980	
$2 {}^{3}S_{1}(b\bar{b})$	9.996	10.02330 ± 0.00031
3 ¹ S ₀ (bb)	10.331	
3 ³ S ₁ (bb)	10.340	10.3553 ± 0.0005
$4 {}^{1}S_{0}(b\bar{b})$	10.601	
$4 \ {}^{3}S_{1}(b\bar{b})$	10.609	10.5800 ± 0.0035

with

 $\Lambda_{QCD} = 0.162 \text{GeV}, a = 2.713,$

$$\lambda = 0.23 (GeV)^2, \alpha = 0.06 \text{GeV}$$

and

$$m_b = 4.83 \text{GeV}, m_c = 1.55 \text{GeV}$$

Oct. 20, 2007

The spectrum:

		$n(\frac{1}{2})^+$	$n(\frac{3}{2})^{-}$
	n=1	11.509	11.884
$m_{\tilde{Q}_1} = 10.0$	n=2	12.035	12.257
	n=3	12.375	12.537
	n=1	21.500	21.867
$m_{\tilde{Q}_1} = 20.0$	n=2	22.016	22.231
-	n=3	22.346	22.503
	n=1	41.494	41.857
$m_{\tilde{Q}_1} = 40.0$	n=2	42.005	42.216
	n=3	42.330	42.483
	n=1	61.490	61.854
$m_{\tilde{Q}_1} = 60.0$	n=2	62.003	62.211
•	n=3	62.325	62.476
	n=1		
$m_{\tilde{Q}_1} = \cdots$	n=2		
-	n=3		

The mass of the $(c\bar{Q}_1)$ bound states (GeV) with different $m_{\bar{Q}_1}$ (GeV).

The mass of the $(b\bar{Q}_1)$ bound states (GeV) with different $m_{\bar{Q}_1}$ (GeV).

		$n(\frac{1}{2})^{+}$	$n(\frac{3}{2})^{-}$
	n=1	14.557	14.946
$m_{\tilde{Q}_1} = 10.0$	n=2	15.090	15.307
••	n=3	15.424	15.583
	n=1	24.519	24.902
$m_{\tilde{Q}_1} = 20.0$	n=2	25.045	25.255
	n=3	25.371	25.523
	n=1	44.497	44.878
$m_{\tilde{Q}_1} = 40.0$	n=2	45.020	45.230
-	n=3	45.339	45.496
	n=1	64.492	64.869
$m_{\tilde{Q}_1} = 60.0$	n=2	65.015	65.219
	n=3	65.336	65.484
	n=1		
$m_{\tilde{Q}_1} = \cdots$	n=2		
	n=3		

The wave functions are obtained too.

2. Decay and lifetime

 $(Q\tilde{t_1})$ decay: Q -decay ($\tilde{t_1}$ as a spectator) $\tilde{t_1}$ -decay (Q as a spectator) $(Q\tilde{t_1})$ -annihilation (SUSY model)

The decay products from the 'spectator' may be used to reject background in 'search for' SUSY experiments.

(Generally $\tilde{t_1}$ decays into a quark and a virtual or a real chargino or neutrolino in SUSY models)

General Feature
$$(Q\bar{\tilde{t}_1})$$
 lifetime: $\tau_{(Q\bar{\tilde{t}_1})} = \frac{1}{\Gamma_{(Q\bar{\tilde{t}_1})}} = \frac{1}{\Gamma_Q + \Gamma_{\tilde{t}_1} + \Gamma_{ann}}$ and $\Gamma_Q \sim \Gamma_{(Q\bar{q})}$

Therefore (generally & roughly)

If $\Gamma_Q \ge \Gamma_{\tilde{t}_1}$, then the lifetime $\tau_{(Q\tilde{t}_1)} \simeq \tau_Q$, If $\Gamma_Q \le \Gamma_{\tilde{t}_1}$, then the lifetime $\tau_{(Q\tilde{t}_1)} \simeq \tau_{\tilde{t}_1}$.

(Note: in general, $\Gamma_a nn(Q + \overline{\tilde{t}_1} \to \cdots)$ cannot be larger than Γ_Q or $\Gamma_{\tilde{t}_1}$ for most SUSY models)

Oct. 20, 2007

3. Fragmentation function DEGLAP equation

 $\frac{dD_{i\to\widetilde{H}}(z,Q^2)}{d\tau} = \sum_j \frac{\alpha_s(Q^2)}{2\pi} \int_z^1 \frac{dy}{y} P_{i\to j}(z/y) D_{j\to\widetilde{H}}(y,Q^2)$ and $P_{\widetilde{t}_1\to\widetilde{t}_{1g}}(x) = \frac{4}{3} \left[\frac{1+x^2}{(1-x)_+} - (1-x) + \delta(1-x) \right]$ $\tau = \log(Q^2/\Lambda_{OCD}^2)$

the 'initiate condition':

$$D_{i \to \widetilde{H}}(z, Q_0^2) = ?$$

Oct. 20, 2007

To calculate the 'initial condition':

Only when a heavy quark Q pair is produced, the gluon is hard

 $D_{\tilde{t}_1 \to \tilde{H}}(z, m_Q^2)$ can be calculated reliable by NRQCD.

Oct. 20, 2007

Fragmentation function $D_{\tilde{t}_1 \rightarrow \tilde{H}}(z, m_Q^2)$:

$$D_{\tilde{t}_1 \to \tilde{H}}(z) = F_{\tilde{t}_1} \cdot f_{\tilde{t}_1}(z)$$

$$F_{\tilde{t}_1} = \frac{16\alpha_s (4m_Q^2)|\psi(0)|^2}{27\pi m_Q^2 m_{\tilde{t}_1}},$$

$$f_{\tilde{t}_1}(z) = \frac{1}{6} \frac{(1-z)^2 z^2}{(1-\alpha_1 z)^6} \cdot \left[2\alpha_1^2 (z-4)z + \alpha_1^3 (3\alpha_1 z - 2z + 2)z + 3\alpha_1^2 - 6\alpha_1 + 6\right]$$

To compare with the case of heavy quark anti-b quark into B_c

$$D_{\bar{b}}(z) = F_{\bar{b}} \cdot f_{\bar{b}}(z)$$

$$F_{\bar{b}} = \frac{8\alpha_s^2 |\psi_0(0)|^2}{27Mm_c^2} \qquad \qquad f_{\bar{b}}(z) = \frac{z(1-z)^2}{(1-\lambda_1 z)^6} \Big\{ [12\lambda_2 z - 3(\lambda_1 - \lambda_2)(1-\lambda_1 z)(2-z)](1-\lambda_1 z)z \\ +6(1+\lambda_2 z)^2(1-\lambda_1 z)^2 - 8\lambda_1\lambda_2 z^2(1-z) \Big\}, \qquad \qquad \lambda_1 = \frac{m_b}{M}, \ \lambda_2 = \frac{m_c}{M} \text{ and } M = m_b + m_c.$$

Oct. 20, 2007

Due to spin-0 of s-quark, the asymptotic behavior is different

$$\begin{array}{l} D_b'(z) \equiv f_{\overline{b}}(z) \\ D_s'(z) \equiv f_{\widetilde{t}_1}(z). \\ \text{If } m_{\widetilde{t}_1} = m_b = 5.18 \text{ GeV} \\ m_c = 1.84 \text{ GeV} \end{array}$$

Asymptotic behavior

 $\begin{array}{l} \text{When } z \longrightarrow 0 \\ D_b'(z) \rightarrow \sim z \\ D_s'(z) \rightarrow \sim z^2. \end{array} \\ \text{When } z \longrightarrow 1 \\ D_b'(z) \rightarrow \sim (1-z)^2 \\ D_s'(z) \rightarrow \sim (1-z)^2. \end{array}$

Approximate solution of DGLAP equation ($Q^2 \gg m_{\tilde{t}_1}^2$) with Field's method:

$$D_{\tilde{t}_1 \to \tilde{H}}(z, Q^2 = 4TeV^2) \text{ (S-wave } \tilde{H}):$$
solid line with $m_{\tilde{t}_1} = 150 \text{ GeV}$
dash-dot line $m_{\tilde{t}_1} = 120 \text{ GeV}:$

$$D_{\tilde{t}_1 \to \tilde{H}}(z, 4m_Q^2):$$
dotted line with $m_{\tilde{t}_1} = 150 \text{ GeV}$
dashed lines with $m_{\tilde{t}_1} = 120 \text{ GeV}$

$m_{\overline{t}}$	Ē ₁	$120 { m GeV}$	$150 { m GeV}$
$\psi(0)_{(\tilde{t}_1\tilde{b})} \left[($	$(GeV)^{3/2}$	2.502	2.530
$\psi(0)_{(\overline{t}_1\overline{c})} \ ($	$(GeV)^{3/2}$	0.693	0.695

Oct. 20, 2007

Factorization:

$$\begin{split} d\sigma_{H_1H_2 \to \widetilde{H}X} \; = \; \sum_{ijk} \int dx_1 \int dx_2 \int dz f_{i/H_1}(x_1, \mu_f) f_{j/H_2}(x_2, \mu_f) \\ \cdot d\hat{\sigma}_{ij \to kX}(x_1, x_2, z; \mu_f, \mu_R) \cdot D_{k \to \widetilde{H}}(z, \mu_f), \end{split}$$

Gluon-gluon fusion $g + g \rightarrow \tilde{t}_1 + \overline{\tilde{t}}_1$:

Quark-antiquark annihilation $q + \bar{q} \rightarrow \tilde{t}_1 + \bar{\tilde{t}}_1$ (similar):

Oct. 20, 2007

$$d\hat{\sigma}(q\bar{q} \to \tilde{t}_1\tilde{t}_1) = \frac{\pi\alpha_s^2[\hat{s}^2 - 4\hat{s}m_{\tilde{t}_1}^2 - (\hat{t} - \hat{u})^2]}{9\hat{s}^4}d\hat{t}$$

The hadronic cross sections (in unit: fb) for the superhadrons $(\tilde{t}_1 \bar{c})$ and $(\tilde{t}_1 \bar{b})$ with $J^P = (\frac{1}{2})^-$.

		LHC (\sqrt{S} =14. TeV)		C (\sqrt{S} =14. TeV) TEVATRON (\sqrt{S} = 1.96 TeV	
Constitu	ients	subprocess gg	subprocess $q\bar{q}$	subprocess gg	subprocess $q\bar{q}$
$m_{\tilde{t}_{1}} = 120$	$(\tilde{t}_1\bar{c})$	114.51	0.36469	0.26975	1.2E-3
${\rm GeV}$	$(\tilde{t}_1\bar{b})$	30.489	0.10374	0.0696	3.E-4
$m_{\tilde{t}_{1}} = 150$	$(\tilde{t}_1\bar{c})$	42.176	0.14591	0.0537	2.E-4
GeV	$(\tilde{t}_1\bar{b})$	11.812	0.0431	0.0142	7.E-5

The contribution from gluon-gluon fusion is greater than that from quark-antiquark annihilation

Oct. 20, 2007

General features (SUSY hadrons)

At LHC

The dashed lines (with $m_{\tilde{t}_1} = 120 \text{ GeV}$): the upper for $(\tilde{t}_1 \bar{c})$, the lower for $(\tilde{t}_1 \bar{b})$

The solid lines (with $m_{\tilde{t}_1} = 150 \text{ GeV}$): the upper for $(\tilde{t}_1 \bar{c})$, the lower for $(\tilde{t}_1 \bar{b})$

Oct. 20, 2007

At Tevatron

The dashed lines (with $m_{\tilde{t}_1} = 120 \text{ GeV}$): the upper for $(\tilde{t}_1 \bar{c})$, the lower for $(\tilde{t}_1 \bar{b})$ The solid lines (with $m_{\tilde{t}_1} = 150 \text{ GeV}$): the upper for $(\tilde{t}_1 \bar{c})$, the lower for $(\tilde{t}_1 \bar{b})$

Oct. 20, 2007

Conclusion: to observe such doubly heavy SUSY hadrons at LHC & Tevatron (for Tevatron it also depends on the s-quark mass) is accessible, if there exists such a 'long life' s-quark indeed in realistic SUSY model !

Whereas

According to the experience on the ratio for production of B-meson to Bc-meson, one can expect that the cross section for heavy-light SUSY mesons (the top-squark with a light quark) can be greater than that of doubly heavy one presented here by

a factor $\sim 10^{(2 - 3)}$.

Thus there are more chances to observe the heavy-light SUSY mesons not only at LHC but also at Tevatron, if the experience really can be applied to the case for SUSY mesons, in addition to that there exists a 'long life' s-quark in realistic SUSY model.

Thank you !