The Truth Is Out There

Line Shapes of the X(3872)

Eric Braaten The Ohio State University

<u>collaborators</u>

Masaoki Kusunoki (postdoc at Arizona) Meng Lu (student at Ohio State)

support:

DOE, Division of High Energy Physics DOE, Division of Basic Energy Sciences

Line Shapes of the X(3872)

- What is the X(3872)?
- Line shapes of the X(3872)
- ... within $\sim 1~{\rm MeV}$ of $D^{*0}\bar{D}^0$ threshold
- ... within $\sim 10~{\rm MeV}$ of $D^*\bar{D}$ threshold

<u>References</u>

Braaten and Lu, arXiv:0709.2697 [hep-ph] Braaten and Lu, to appear soon on arXiv [hep-ph]

What is the X(3872)?

Two crucial experimental facts

• mass is extremely close to $D^{*0}\overline{D}^{0}$ threshold

 $M_X - (M_{D^{*0}} + M_{D^0}) = -0.6 \pm 0.6 \text{ MeV}$

measured in $J/\psi \pi^+\pi^-$ decay mode by Belle, CDF, Babar, D0 precise determination of D^0 mass by CLEO

• quantum numbers $J^{PC} = 1^{++}$ strongly preferred observation of $X \to J/\psi \gamma$ by Belle analyses of $X \to J/\psi \pi^+\pi^-$ by Belle, CDF observation of $X \to D^0 \overline{D}{}^0 \pi^0$ by Belle, Babar

Two crucial experimental facts

- $J^{PC} = 1^{++}$
- \implies S-wave coupling to $D^{*0}\overline{D}^0$ (and $D^0\overline{D}^{*0}$)
- $M_X (M_{D^{*0}} + M_{D^0}) = -0.6 \pm 0.6 \text{ MeV}$ \implies resonant interaction with $D^{*0}\overline{D}^0$ (and $D^0\overline{D}^{*0}$)

Conclusion: X(3872) is either/or

• weakly-bound charm meson molecule

$$X = \frac{1}{\sqrt{2}} \left(D^{*0} \bar{D}^0 + D^0 \bar{D}^{*0} \right)$$

• virtual state of charm mesons

Nonrelativistic Quantum Mechanics

2-body system with short-range interactions and S-wave resonance sufficiently close to threshold has universal properties that

- depend only on the large scattering length *a*
- are insensitive to details of interactions at shorter distances structure of constituents mechanism for resonance fine-tuning of potential tuning of energy of molecule etc.

"Universality of Few-Body Systems with Large Scattering Length" Braaten and Hammer, arXiv:cond-mat/0410417 (Physics Reports)

Universal features

- large scattering length *a*
- \bullet cross section at low energy E

$$\sigma(\underline{E}) = \frac{4\pi a^2}{1 + 2M_{D^*\bar{D}} a^2 E}$$

shallow S-wave bound states

a < 0: none

a>0: one binding energy: $E_X=1/(2M_{D^*\bar{D}}a^2)$ mean separation: $\langle r \rangle_X=a/2$

X(3872) has universal properties determined by large scattering length a in $D^{*0}\overline{D}^{0}+D^{0}\overline{D}^{*0}$ channel insensitive to all shorter length scales of QCD

Universal results for a > 0:

$$E_X = 1/(2M_{D^*\bar{D}}a^2)$$

$$\langle r \rangle_X = a/2$$

measured binding energy: $E_X = 0.6 \pm 0.6$ MeV

predicted mean separation: $\langle r \rangle_X = 2.9^{+\infty}_{-0.9}$ fm

Beauty and the Beast

$B \longrightarrow K + X(3872)$

$\langle r \rangle_X = 2.9^{+\infty}_{-0.9}$ fm

LeFou: Tell us again, old man, just how big was the Beast? Maurice: It was enormous, I'd say at least 8, no, more like 10 fermis!

LeFou: Well, you don't get much crazier than that!

Belle: My father's not crazy and I can prove it!

Line Shapes of the X(3872)

Line shape of X in decay mode C = invariant mass distribution of C: $M_{D^{*0}} + M_{D^0} + E$

$$\frac{d\Gamma}{dE}[B \to K + C]$$

Mass measurements of X(3872) ...

... in $J/\psi \pi^+\pi^-$

$$M_X - (M_{D^{*0}} + M_{D^0}) = -0.6 \pm 0.6$$
 MeV

... in $D^0 \bar{D}^0 \pi^0$

$$\begin{split} M - (M_{D^{*0}} + M_{D^0}) &= +4.1 \pm 0.7^{+0.3}_{-1.6} \text{ MeV} \quad \text{(Belle)} \\ &= +4.3 \pm 1.1 \pm 0.5 \text{ MeV} \quad \text{(Babar)} \end{split}$$

```
Line Shapes of X (cont.)
```

```
short distances: \ll |a| \sim 6 fm
```

```
large momenta: \gg 1/|a| \sim 30 MeV
```

Qualitative difference between decay modes

 $X \longrightarrow J/\psi \, \pi^+ \pi^-$

 $X \longrightarrow D^0 \overline{D}{}^0 \pi^0$

involves decay of constituent $D^{*0} \rightarrow D^0 \pi^0$ $\bar{D}^{*0} \rightarrow \bar{D}^0 \pi^0$

decay products have small momenta $\sim 1/|a|$

Qualitative difference between bound state and virtual state

Quantitative behavior of line shapes may depend on

- D^* widths $\Gamma[D^{*0}] = 65.5 \pm 15.4 \text{ keV}$
- inelastic scattering channels of charm mesons $J/\psi \pi^+\pi^-$, $J/\psi \pi^+\pi^-\pi^0$, ...
- charged charm mesons $D^{*+}D^{-}$ threshold: +8.1 MeV
- 3-body channels: $D\bar{D}\pi$ $D^0\bar{D}^0\pi^0$ threshold: -7.1 MeV $D^+\bar{D}^0\pi^-$, $D^0D^-\pi^+$ threshold: +2.3 MeV see talk by Tom Mehen

Recent analyses of data from Belle and Babar on $B^+ \longrightarrow K^+ + X(3872)$ in decay channels $J/\psi \pi^+\pi^-$, $D^0 \overline{D}{}^0 \pi^0$

 Hanhart, Kalashnikova, Kudryavtsev, Nefediev [arXiv:0704.0605] included effects of D*±D[∓] channel included effects of inelastic channels J/ψ π⁺π⁻, J/ψ π⁺π⁻π⁰ ignored effects of D* widths assumed bound state cannot decay into D⁰D¯⁰π⁰
 Conclusion: X(3872) must be a virtual state See talk by Hanhart

• Braaten and Lu [arXiv:0709.2697]

neglected effects of $D^{*\pm}D^{\mp}$ channel included effects of inelastic channels $J/\psi \pi^+\pi^-$, $J/\psi \pi^+\pi^-\pi^0$ included effects of D^{*0} width Conclusion: data prefers X(3872) to be a bound state but virtual state not excluded

Analysis of Braaten and Lu [arXiv:0709.2697]

Belle data on $B^+ \rightarrow K^+ + X$ with total experimental errors subtracted line shapes with 3 adjustable parameters two local minima of χ^2 with Re $\gamma = +17.3$ MeV and +57.8 MeV

Conclusions

data prefers X(3872) to be a bound state, but virtual state not excluded can explain difference between measured mass in $J/\psi \pi^+\pi^-$ and in $D^0 \overline{D}{}^0 \pi^0$

Line Shapes of X(3872)within ~ 1 MeV of $D^{*0}\bar{D}^0$ Threshold

S-wave resonance in 1⁺⁺ channel: $D^{*0}\overline{D}^0 + D^0\overline{D}^{*0}$

1. begin with scattering amplitude f(E) that satisfies unitarity exactly:

 $\operatorname{Im} f(E) = |f(E)|^2 \sqrt{2M_{D^*\bar{D}}E}$

- 2. apply deformations that take into account D^{*0} width inelastic scattering channels
- 3. insert into factorization formulas for the line shapes

Line Shapes within ~ 1 MeV of Threshold (cont.)

1. scattering amplitude that satisfies unitarity exactly:

$$f(E) = \frac{1}{-\gamma + \kappa(E)}$$

$$\gamma = 1/a$$

$$\kappa(E) = (-2M_{D^*\bar{D}}E - i\varepsilon)^{1/2}$$

- a > 0: bound state pole at $E = -\gamma^2/(2M_{D^*\bar{D}})$
- *a* < 0: virtual state

pole on second sheet of complex energy E

Line Shapes within ~ 1 MeV of Threshold (cont.)

2. Apply deformations to unitary scattering amplitude

$$f(E) = \frac{1}{-\gamma + \kappa(E)}$$

• take into account D^{*0} width: $M_{D^{*0}} \rightarrow M_{D^{*0}} - i\Gamma[D^{*0}]/2$

$$\kappa(E) = \left(-2M_{D^*\bar{D}}(E + i\Gamma[D^{*0}]/2)\right)^{1/2}$$

• take into account inelastic scattering channels

$$\gamma \longrightarrow \operatorname{Re} \gamma + i \operatorname{Im} \gamma, \quad \operatorname{Im} \gamma > 0$$

Optical theorem:

 $\operatorname{Im} f(E) = |f(E)|^2 \left(\operatorname{Im} \gamma - \operatorname{Im} \kappa(E) \right)$ consistent with multi-channel unitarity Line Shapes within ~ 1 MeV of Threshold (cont.)

3. Factorization formulas for the line shapes factor rates into long-distance factor (depends on E, γ) × short-distance factors (insensitive to E, γ)

$$B^{+} \to K^{+} + C, \text{ where } C = J/\psi \pi^{+} \pi^{-}, J/\psi \pi^{+} \pi^{-} \pi^{0}, \dots$$
$$\frac{d\Gamma}{dE} = 2\Gamma_{B^{+}}^{K^{+}} \times |f(E)|^{2} \times \Gamma^{C}$$
$$B^{+} \to K^{+} + D^{0} \bar{D}^{0} \pi^{0}$$
$$\frac{d\Gamma}{dE} = 2\Gamma_{B^{+}}^{K^{+}} \times |f(E)|^{2} \left[M_{D^{*}\bar{D}} \left(\sqrt{E^{2} + \Gamma[D^{*0}]^{2}/4} + E \right) \right]^{1/2}$$
$$\times \text{Br}[D^{*0} \to D^{0} \pi^{0}]$$

Short-distance factors

- Γ_B^K different for $B^+ \to K^+$ and $B^0 \to K^0$
- Γ^{C} different for $J/\psi \pi^{+}\pi^{-}$ and $J/\psi \pi^{+}\pi^{-}\pi^{0}$

Line Shapes of X(3872)within ~ 10 MeV of $D^{*0}\bar{D}^0$ Threshold

S-wave resonance in two coupled 1^+ + channels: $D^{*0}\overline{D}^0 + D^0\overline{D}^{*0}$, $D^{*+}D^- + D^+D^{*-}$

- 1. begin with scattering amplitudes $f_{00}(E)$, $f_{01}(E)$, $f_{11}(E)$ that satisfy two-channel unitarity exactly with isospin symmetry at high energy \implies 2 scattering parameters: $\gamma_{I=0}$, $\gamma_{I=1}$
- 2. apply deformations that take into account D^{*0} , D^{*+} widths inelastic scattering channels
- 3. insert into factorization formulas for the line shapes, with short-distance factors constrained by isospin symmetry

Line Shapes within ~ 10 MeV of Threshold (cont.)

Implications

1. Conceptual error by Braaten and Kusunoki [hep-ph/0412268]

prediction: $B^0 \to K^0 + X$ is suppressed compared to $B^+ \to K^+ + X$ Belle, Babar: no indication of strong suppression error: implicitly assumed $|\gamma_0|, |\gamma_1| \ll \sqrt{2M_{D^*\bar{D}}\nu} = 125$ MeV

2. Conceptual error by Voloshin [arXiv:0704.3029]

prediction: line shapes of X from $B^0 \to K^0$ same as from $B^+ \to K^+$ errors: did not allow for resonant scattering between neutral and charged $D^*\overline{D}$ channels results inconsistent with isospin symmetry in short-distance factors for $B \to K$ Line Shapes within ~ 10 MeV of Threshold (cont.)

3. Interpretation of scattering amplitude of Hanhart et al.

"generalization of Flatté parametrization for near-threshold resonance" limit $|\gamma_1| \gg |\gamma_0|, \sqrt{2M_{D^*\bar{D}}\nu}$ gives essentially same scattering amplitude

4. Line shapes depend on production process, decay channel

determined by γ_0 , γ_1 different for $B^+ \to K^+ + X$ and $B^0 \to K^0 + X$ different for $J/\psi \ \pi^+\pi^-$, $J/\psi \ \pi^+\pi^-\pi^0$, $D^0 \overline{D}^0 \pi^0$ zeroes in line shapes of $J/\psi \ \pi^+\pi^ B^+ \to K^+ + X$: zero near +6 MeV $B^0 \to K^0 + X$: zero near -2 MeV no zeroes in line shapes of $J/\psi \ \pi^+\pi^-\pi^0$, $D^0 \overline{D}^0 \pi^0$

5. Ratios of production rates from $B^0 \to K^0$ and $B^+ \to K^+$ determined by γ_0, γ_1

