Relativistic Corrections to $e^+e^-
ightarrow J/\psi + \eta_c$

G.T. Bodwin, D. Kang, J. Lee Phys. Rev. D **74**, 014014 (2006)

G.T. Bodwin, D. Kang, T. Kim, J. Lee, C. Yu arXiv:hep-ph/0611002

G.T. Bodwin, H.S. Chung, D. Kang, J. Lee, C. Yu arXiv:0710.0994 [hep-ph]

G.T. Bodwin, J. Lee, C. Yu arXiv:0710.0995 [hep-ph]

Outline

- The Conflict Between Theory and Experiment
- ullet Matrix Elements for $e^+e^-
 ightarrow J/\psi + \eta_c$
- Previous Work on Relativistic Corrections
 - Braaten, Lee (2003)
 - Bodwin, Kang, Lee (2006)
 - * Potential Model
 - * Resummation
 - Bodwin, Kang, Kim, Lee, Yu (2006)
 - He, Fan, Chao (2007)
- New Calculation of Relativistic Corrections
 - New Calculation of the Matrix Elements
 - New Calculation of Relativistic Corrections to $e^+e^-
 ightarrow J/\psi + \eta_c$
 - Comparisons with Previous Work
- Summary

• Experiment

Belle (2004): $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] \times B_{>2} = 25.6 \pm 2.8 \pm 3.4 \text{ fb.}$ BaBar (2005): $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] \times B_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1} \text{ fb.}$

- NRQCD at LO in α_s and v
 Braaten, Lee (2003): σ[e⁺e⁻ → J/ψ + η_c] = 3.78 ± 1.26 fb.
 Liu, He, Chao (2003): σ[e⁺e⁻ → J/ψ + η_c] = 5.5 fb.
 The two calculations employ different choices of m_c, NRQCD matrix elements, and α_s.
 Braaten and Lee include QED effects.
- Initially, the disagreement was worse:
 - The Belle cross section has moved down from the 2002 value $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] \times B_{\geq 4} = 33^{+7}_{-6} \pm 9$ fb.
 - Braaten and Lee found a sign error in the QED interference term that raised the prediction from 2.31 ± 1.09 fb.
- An important recent development:

A calculation of corrections at NLO in α_s by Zhang, Gao, and Chao (2005) shows that the *K* factor is approximately 1.96.

• The matrix elements at leading order in the heavy-quark velocity v:

$$egin{aligned} &\langle \mathcal{O}_1
angle_{J/\psi} \;=\; \left| \langle J/\psi(\lambda) | \psi^\dagger \pmb{\sigma} \cdot \pmb{\epsilon}(\lambda) \chi | 0
angle
ight|^2, \ &\langle \mathcal{O}_1
angle_{\eta_c} \;=\; \left| \langle \eta_c | \psi^\dagger \chi | 0
angle
ight|^2. \end{aligned}$$

- ψ annihilates a heavy quark;
 - χ^{\dagger} annihilates a heavy antiquark.
- Ratios of matrix elements of higher orders in v to the leading-order matrix elements:

$$egin{aligned} &\langle q^{2n}
angle_{J/\psi} \ = \ rac{\langle J/\psi(\lambda) | \psi^{\dagger}(-rac{i}{2}\overleftrightarrow{D})^{2n} \pmb{\sigma} \cdot \pmb{\epsilon}(\lambda)\chi | 0
angle}{\langle J/\psi(\lambda) | \psi^{\dagger} \pmb{\sigma} \cdot \pmb{\epsilon}(\lambda)\chi | 0
angle}, \ &\langle q^{2n}
angle_{\eta_c} \ = \ rac{\langle \eta_c | \psi^{\dagger}(-rac{i}{2}\overleftrightarrow{D})^{2n}\chi | 0
angle}{\langle \eta_c | \psi^{\dagger}\chi | 0
angle}. \end{aligned}$$

These are the source of the relativistic corrections.

• $\langle \mathcal{O}_1 \rangle_{J/\psi}$ and $\langle q^{2n} \rangle_{J/\psi}$ appear in $\Gamma[J/\psi \to e^+e^-]$. $\langle \mathcal{O}_1 \rangle_{\eta_c}$ and $\langle q^{2n} \rangle_{\eta_c}$ appear in $\Gamma[\eta_c \to \gamma\gamma]$.

Previous Work on Relativistic Corrections

Braaten, Lee (2003)

- Showed that the order- v^2 corrections to $\sigma(e^+e^- \rightarrow J/\psi + \eta_c)$ could be large: $\sigma_0 \times 2.0^{+2.9}_{-1.1}$.
- The large uncertainties arise from uncertainties in the NRQCD matrix elements of higher order in v.
- In this work, $\langle q^2 \rangle_{J/\psi}$ and $\langle q^2 \rangle_{\eta_c}$ were determined from the Gremm-Kapustin relation:

$$\langle q^2 \rangle \approx \epsilon_{\mathsf{B}} m_c = (M_H - 2m_c) m_c.$$

 $\epsilon_{\rm B}$ is the binding energy.

- Large uncertainties in m_c make the method unreliable.
- For $m_c = 1.4 \pm 0.2$ GeV,

$$-0.35 < \langle q^2 \rangle < 0.84.$$

- Even the sign of $\psi^{(2)}(0)$ is not known with great confidence.
- The large nonrelativistic correction casts doubt on the reliability of the v expansion.

Bodwin, Kang, Lee (2006)

Potential Model

- Calculated $\langle q^2 \rangle_{J/\psi}$ by determining $\epsilon_{\rm B}$ directly in a potential model.
- Greatly reduces the uncertainties.
- The potential model describes QCD, up to corrections of relative order v^2 , provided that the static $Q\bar{Q}$ potential is known exactly.
- Used the Cornell (linear plus Coulomb) potential, which fits the lattice static potential well.
- Parameters fixed using
 - lattice value of the string tension,
 - $m_{\psi(2S)}-m_{J/\psi(1S)}$,
 - $\langle \mathcal{O}_1 \rangle_{J/\psi}$, from comparison of theory and experiment for $\Gamma[J/\psi \to e^+e^-]$.
- Result: $\langle q^2 \rangle_{J\psi} = 0.50 \pm 0.09 \pm 0.15 \text{ GeV}^2$.
- First error bar: uncertainty in the input potential-model parameters and the wave function at the origin.

Second error bar: neglected relative-order- v^2 corrections.

Resummation

• Proved a generalized Gremm-Kapustin relation:

$$\langle \boldsymbol{q}^{2n}
angle pprox \left(m_c \epsilon_{\mathrm{B}}
ight)^n pprox \left\langle \boldsymbol{q}^2
ight
angle^n.$$

- Follows from dimensional regularization and pure power behavior of individual terms in the static potential.
- Accurate up to corrections of relative order v^2 .
- Allows one to resum a class of relativistic corrections.
- Suppose that the NRQCD expansion of an amplitude A is of the form

$$A = \sum_{n} \underbrace{\left[\frac{1}{n!} \left(\frac{\partial}{\partial q^2}\right)^n H(q^2)\right]}_{\text{short-distance coeff.}} \langle q^{2n} \rangle \langle \mathcal{O}_1 \rangle^{1/2},$$

where $H(q^2)$ is the hard-scattering amplitude.

• Using the generalized Gremm-Kapustin relation, one has

$$A = H(q^2)|_{q^2 = \langle q^2 \rangle} \langle \mathcal{O}_1 \rangle^{1/2}.$$

• The NRQCD matrix elements are related to the $Q\bar{Q}$ color-singlet wave function in the Coulomb gauge:

$$\langle \boldsymbol{q}^{2n}
angle \langle \mathcal{O}_1
angle^{1/2} = \sqrt{2N_c} \int^\Lambda rac{d^3 q}{(2\pi)^3} \boldsymbol{q}^{2n} \psi(\boldsymbol{q}^2).$$

• Therefore

$$A = \sqrt{2N_c} \sum_{n} \underbrace{\left[\frac{1}{n!} \left(\frac{\partial}{\partial q^2}\right)^n H(q^2)\right]}_{\text{short-distance coeff.}} \int^{\Lambda} \frac{d^3q}{(2\pi)^3} q^{2n} \psi(q^2)$$
$$= \sqrt{2N_c} \int^{\Lambda} \frac{d^3q}{(2\pi)^3} H(q^2) \psi(q^2).$$

- The NRQCD expansion is the Taylor expansion of the convolution of the hard-scattering amplitude with the wave function.
- The resummation is equivalent to including all relativistic corrections from the $Q\bar{Q}$ wave function, up to the UV cutoff Λ of the NRQCD matrix elements.

Bodwin, Kang, Kim, Lee, Yu (2006) (BKKLY)

- Nonrelativistic corrections $\sigma[e^+e^- \rightarrow J/\psi + \eta_c]$ can come from two sources:
 - Direct corrections to the process $e^+e^- \rightarrow J/\psi + \eta_c$ itself,
 - Indirect corrections that enter through $\langle \mathcal{O}_1 \rangle_{J/\psi}$. Appear when $\Gamma[J/\psi \to e^+e^-]$ is used to determine $\langle \mathcal{O}_1 \rangle_{J/\psi}$ because of relativistic corrections to the theoretical expression for $\Gamma[J/\psi \to e^+e^-]$.
- The calculation assumes that $\langle \mathcal{O}_1 \rangle_{\eta_c} = \langle \mathcal{O}_1 \rangle_{J/\psi}$ and $\langle q^2 \rangle_{\eta_c} = \langle q^2 \rangle_{J/\psi}$.
 - Heavy-quark spin symmetry.
 - Accurate up to corrections of relative order v^2 .
- In determining $\langle q^2 \rangle_{J/\psi}$ from the potential model, the effect of relativistic corrections to $\Gamma[J/\psi \to e^+e^-]$ on $\langle \mathcal{O}_1 \rangle_{J/\psi}$ is not taken into account.
- The calculation applies the potential-model value of $\langle q^2 \rangle_{J/\psi}$ to both the direct and indirect corrections to $\sigma[e^+e^- \rightarrow J/\psi + \eta_c]$.
- Includes resummation of a class of relativistic corrections.
- Direct correction: 34%. Indirect correction: 74%.

• Nonrelativistic corrections and corrections of NLO in α_s together give

$$\sigma[e^+e^- \to J/\psi + \eta_c] = 17.5 \pm 5.7$$
 fb.

- Includes pure QED corrections.
- Takes into account only uncertainties from m_c , $\langle q^2 \rangle_{J/\psi}$, and $\langle q^2 \rangle_{\eta_c}$.
- Effects of resummation are small: about 10% of both the direct and indirect relativistic corrections.

He, Fan, Chao (2007)

- $\langle \mathcal{O}_1 \rangle_{J/\psi}$, $\langle \mathcal{O}_1 \rangle_{\eta_c}$, and $\langle q^2 \rangle_{J/\psi} = \langle q^2 \rangle_{\eta_c}$ determined from
 - $\Gamma[J/\psi \rightarrow e^+e^-]$,
 - $\Gamma[\eta_c
 ightarrow \gamma\gamma]$,
 - $\Gamma[J/\psi \rightarrow \text{light hadrons}].$

Yields rather different values of the matrix elements from those in BKKLY.

• Nonrelativistic corrections and corrections of NLO in α_s together result in

$$\sigma[e^+e^- \to J/\psi + \eta_c] = 20.04 \text{ fb.}$$

• Does not include pure QED corrections.

New Calculation of Relativistic Corrections

New Calculation of Matrix Elements

(Bodwin, Chung, Kang, Lee, Yu)

- Makes use of $\Gamma[J/\psi \to e^+e^-]$ and $\Gamma[\eta_c \to \gamma\gamma]$ to compute $\langle \mathcal{O}_1 \rangle_{J/\psi}$ and $\langle \mathcal{O}_1 \rangle_{\eta_c}$.
 - A class of relativistic corrections is resummed.
- Makes use of the potential-model method to compute $\langle q^2 \rangle_{J/\psi}$ and $\langle q^2 \rangle_{\eta_c}$.
- The computations of $\langle \mathcal{O}_1 \rangle_{J/\psi}$ and $\langle q^2 \rangle_{J/\psi}$ are actually coupled, as are the computations of $\langle \mathcal{O}_1 \rangle_{\eta_c}$ and $\langle q^2 \rangle_{\eta_c}$.
 - The theoretical expression for $\Gamma[J/\psi \to e^+e^-]$ yields $\langle \mathcal{O}_1 \rangle_{J/\psi}$, but it depends on $\langle q^2 \rangle_{J/\psi}$.
 - $\langle q^2 \rangle_{J/\psi}$ is computed in the potential model, which uses $\langle O_1 \rangle_{J/\psi}$ as an input.
- In computing $\langle q^2 \rangle_{J/\psi}$, BKKLY ignored the dependence of $\langle \mathcal{O}_1 \rangle_{J/\psi}$ on $\langle q^2 \rangle_{J/\psi}$.
- We improve on this approach by solving numerically two sets of two coupled nonlinear equations:
 - one set for $\langle {\cal O}_1
 angle_{J/\psi}$ and $\langle {m q}^2
 angle_{J/\psi}$,
 - one set for $\langle {\cal O}_1
 angle_{\eta_c}$ and $\langle q^2
 angle_{\eta_c}$.

- Other refinements:
 - More precise analysis of the effect of the string tension on the input parameters.
 - Effects of the running of $\alpha_{\rm EM}$ are taken into account.
 - $\langle \mathcal{O}_1 \rangle_{\eta_c}$ is determined by averaging values from $\Gamma[\eta_c \to \gamma \gamma]$ and $\Gamma[J/\psi \to e^+e^-]$. (Uncertainties from the use of the heavy-quark spin symmetry are taken into account in the averaging.)
- Includes a detailed analysis of uncertainties, some of which are highly correlated among the various matrix elements.
- Results:

$$egin{aligned} &\langle \mathcal{O}_1
angle_{J/\psi} \ = \ 0.440^{+0.067}_{-0.055} \ {
m GeV}^3, \ &\langle \mathcal{O}_1
angle_{\eta c} \ = \ 0.437^{+0.111}_{-0.105} \ {
m GeV}^3, \ &\langle q^2
angle_{J/\psi} \ = \ 0.441^{+0.140}_{-0.140} \ {
m GeV}^2, \ &\langle q^2
angle_{\eta c} \ = \ 0.442^{+0.143}_{-0.143} \ {
m GeV}^2. \end{aligned}$$

- In comparison with the values in Bodwin, Kang, Lee (2006), $\langle q^2 \rangle_{J/\psi}$ and $\langle q^2 \rangle_{J/\psi}$ are about 12% smaller.
- In comparison with the values in BKKLY, $\langle O_1 \rangle_{J/\psi}$ and $\langle O_1 \rangle_{\eta_c}$ are about 1% smaller.

New Calculation of Relativistic Corrections to $e^+e^- \rightarrow J/\psi + \eta_c$ (Bodwin, Lee, Yu)

Calculational Strategy

- Compute in the NRQCD factorization method.
- QCD/QED diagrams (plus six additional diagrams):

• QED fragmentation diagram (plus one additional diagram):

- Choose a particular frame and coordinate system to compute the helicity amplitudes for $\gamma^* \rightarrow (Q\bar{Q})_1({}^3S_1) + (Q\bar{Q})_1({}^1S_0)$
 - Tensor analysis shows that there is only one independent helicity amplitude.
 - Compute the helicity amplitudes for $\gamma^* \to (Q\bar{Q})_1(\text{spin triplet}) + (Q\bar{Q})_1(\text{spin singlet})$ analytically.
 - Integrate numerically over the angles of the relative $Q\bar{Q}$ momenta to project out the S-wave component.
- Form the cross section: Square the helicity amplitudes, multiply by the lepton factor, average over lepton spins, integrate over the phase space, and multiply by the flux.

Features

- Makes use of the matrix-element calculation of Bodwin, Chung, Kang, Lee, Yu (2007).
- A class of relativistic corrections is resummed.
- QED corrections are included.
- VMD is used to compute the fragmentation part of the QED amplitude, reducing theoretical uncertainties.
- The running of $\alpha_{\rm EM}$ is taken into account.
- Uses the results of Zhang, Gao, and Chao (2005) for the corrections of NLO in α_s .
- The interference between the relativistic corrections and the NLO in α_s corrections is computed.
- A detailed error analysis takes into account the correlations between uncertainties in the NRQCD matrix elements and in the hard-scattering cross section.

Results

case	$\langle \mathcal{O}_1 \rangle_{J/\psi}$	$\langle q^2 angle_{J/\psi}$	$\langle \mathcal{O}_1 \rangle_{\eta_c}$	$\langle q^2 angle_{\eta c}$	σ_0	σ_v	$\sigma_{ m tot}$
central	0.440	0.441	0.437	0.442	6.4	9.3	17.6
$+\Delta Q_1 = +\Delta \langle q^2 \rangle_{J/\psi}$	0.450	0.573	0.437	0.442	6.5	9.8	18.4
$-\Delta Q_1 = -\Delta \langle q^2 \rangle_{J/\psi}$	0.430	0.308	0.437	0.442	6.3	8.8	16.7
$+\Delta Q_2 = +\Delta m_c$	0.433	0.443	0.470	0.430	6.0	7.6	13.9
$-\Delta Q_2 = -\Delta m_c$	0.451	0.437	0.413	0.450	6.9	11.8	22.8
$+\Delta Q_3 = +\Delta \sigma$	0.443	0.482	0.444	0.482	6.6	9.7	18.3
$-\Delta Q_3 = -\Delta \sigma$	0.437	0.400	0.431	0.403	6.3	8.9	16.9
$+\Delta Q_4 = +\Delta \operatorname{NNLO}_{J/\psi}$	0.504	0.419	0.473	0.429	7.9	11.3	21.5
$-\Delta Q_4 = -\Delta \operatorname{NNLO}_{J/\psi}$	0.387	0.459	0.408	0.452	5.3	7.8	14.6
$+\Delta Q_5 = +\Delta \Gamma_{J/\psi}$	0.451	0.437	0.443	0.440	6.7	9.6	18.2
$-\Delta Q_5 = -\Delta \Gamma_{J/\psi}$	0.429	0.444	0.431	0.444	6.2	9.0	16.9
$+\Delta Q_6 = +\Delta v^2$	0.440	0.441	0.511	0.417	7.5	10.8	20.4
$-\Delta Q_6 = -\Delta v^2$	0.440	0.441	0.364	0.467	5.3	7.8	14.7
$+\Delta Q_7 = +\Delta \langle q^2 \rangle_{\eta_c}$	0.440	0.441	0.461	0.574	6.8	10.2	19.1
$-\Delta Q_7 = -\Delta \langle q^2 angle_{\eta_C}$	0.440	0.441	0.414	0.309	6.1	8.4	16.1
$+\Delta Q_8 = +\Delta \operatorname{NNLO}_{\eta_c}$	0.440	0.441	0.474	0.429	7.0	10.0	19.0
$-\Delta Q_8 = -\Delta \operatorname{NNLO}_{\eta_c}$	0.440	0.441	0.408	0.452	6.0	8.7	16.4
$+\Delta Q_9 = +\Delta \Gamma_{\eta_c}$	0.440	0.441	0.487	0.425	[7.2	10.3	19.5
$-\Delta Q_9 = -\Delta \Gamma_{\eta_c}$	0.440	0.441	0.385	0.460	[5.6	8.2	15.5
$+\Delta Q_{10} = +\Delta \mu$	0.440	0.441	0.437	0.442	4.4	6.3	12.3
$-\Delta Q_{10} = -\Delta \mu$	0.440	0.441	0.437	0.442	9.5	13.9	25.0

$$\sigma_{\rm tot} = 17.6^{+0.8+5.3+0.7+3.9+0.7+2.8+1.6+1.4+1.9}_{-0.9-3.7-0.7-3.0-0.7-2.9-1.5-1.1-2.0} \,\rm{fb} = 17.6^{+7.8}_{-6.3} \,\rm{fb}$$

• Can estimate uncalculated terms of relative order α_s^2 and $\alpha_s v^2$ either by varying the renormalization scale by a factor of two:

$$\sigma_{
m tot} = 17.6^{+10.7}_{-8.3}~{
m fb}$$

or by taking α_s or v^2 times the NLO contribution to σ :

$$\sigma_{
m tot} = 17.6^{+8.1}_{-6.7}$$
 fb.

- Uncertainty in the NRQCD factorization formula: $\sim m_H^2/(s/4) \approx 34\%$.
- $\sigma_{
 m tot}$ consists of
 - 5.4 fb Leading order in α_s and v (including indir. rel. corr., but without QED contribution)
 - 1.0 fb QED contribution
 - 2.9 fb Direct relativistic corrections
 - 6.9 fb Corrections of NLO in α_s
 - 1.4 fb Interference between rel. corr. and corr. of NLO in α_s
 - 17.6 fb Total

- The indirect relativistic corrections account for a change of 72%.
- The direct relativistic corrections are smaller: 40%.
 - Effects from the finite width of the $Q\bar{Q}$ wave function are modest, once one excludes contributions from the high-momentum tails (part of the corrections of NLO in α_s).
 - The effect of resummation is small: -12% of the direct relativistic correction. The v expansion appears to be converging well.

Comparison with BKKLY

- $\sigma^{\text{BKKLY}}[e^+e^- \to J/\psi + \eta_c] = 17.5 \pm 5.7 \text{ fb.}$
- The effects of the various refinements cancel approximately: The central value of our new cross section is essentially the same as in BKKLY.
- The error bars are larger in our new cross section because BKKLY considered only uncertainties from m_c , $\langle q^2 \rangle_{J/\psi}$, and $\langle q^2 \rangle_{\eta_c}$.

- Central value is $\sigma_{\rm tot}^{\rm HFC}=20.04$ fb.
 - Does not include QED contribution, interference contribution, resummation.
 - Should be compared with 14.7 fb in our calculation.
 - $\sigma_{\rm tot}^{\rm HFC}$ is 37% larger.
- Main differences relative to our calculation:

Change Source

- +30% Use of a larger value of $\langle \mathcal{O}_1 \rangle$
- +47% Use of a larger value of α_s (0.2592 vs. 0.21)
- -9% Use of a smaller value of α (1/137 vs. 1/130.9)
- -12% Use of a larger value of m_c (1.5 GeV vs. 1.4 GeV) at fixed values of the M.E.'s
- -9% Use of smaller values of $\langle {m q}^2
 angle_{J/\psi}$ and $\langle {m q}^2
 angle_{\eta_c}$

Summary

- We have carried out a new calculation in the NRQCD framework of the relativistic corrections to $\sigma[e^+e^- \rightarrow J/\psi + \eta_c].$
- The calculation uses $\Gamma[J/\psi \rightarrow e^+e^-]$, $\Gamma[\eta_c \rightarrow \gamma\gamma]$, and a potential model to determine the relevant NRQCD matrix elements.
- The calculation contains a number refinements, including
 - a more accurate determination of the matrix elements,
 - use of $m_{J/\psi}$ instead of $2m_c$ to reduce uncertainties,
 - use of the VMD method for calculating fragmentation amplitudes,
 - resummation of a class of corrections to all orders in v,
 - a detailed analysis of the uncertainties.
- Our result agrees with experiment, within uncertainties:
 - Theory: $\sigma[e^+e^- \to J/\psi + \eta_c] = 17.6^{+8.1}_{-6.7} \,\text{fb}$
 - Belle: $\sigma[e^+e^- \to J/\psi + \eta_c] \times B_{>2} = 25.6 \pm 2.8 \pm 3.4 \text{ fb.}$
 - BaBar: $\sigma[e^+e^- \rightarrow J/\psi + \eta_c] \times B_{>2} = 17.6 \pm 2.8^{+1.5}_{-2.1}$ fb.
- It would be desirable to reduce the theoretical and experimental uncertainties. Elimination of the m_c uncertainty would decrease the theory error bars by $^{+1.9}_{-1.1}$ fb.
- It seems fair to say that the discrepancy between theory and experiment has been resolved.