Thermodynamics of a heavy $Q\bar{Q}$ -pair near T_c

D. Antonov, S. Domdey, H.-J. Pirner

Institut für Theoretische Physik, Universität Heidelberg

QWG meeting, DESY, Oct. 17, 2007

- Static $Q\bar{Q}$ -pair with gluons at $T < T_c$
- Static $Q\bar{Q}$ -pair with light quarks at $T < T_c$
- Conclusions

Outlook

OWG meeting DE

Motivation: Experimental data from RHIC \Rightarrow the quark-gluon plasma behaves as a perfect fluid:

 $\frac{L_{\mathrm{mfp}}}{\beta} \ll 1,$

 $L_{
m mfp}$ is a particle's mean free path, $eta\equiv 1/{\cal T}$ is the inter-particle distance.

Motivation: Experimental data from RHIC \Rightarrow the quark-gluon plasma behaves as a perfect fluid:

 $L_{\rm mfp}$ is a particle's mean free path, $\beta \equiv 1/T$ is the inter-particle distance. For a dilute gas $L_{\rm mfp} \sim rac{1}{n\sigma_{\star}}$,

 $rac{L_{
m mfp}}{eta} \ll 1,$

where $n \sim T^3$ is the particle-number density, σ_t is the Coulomb transport cross section:

$$\sigma_t = \int d\sigma (1 - \cos heta) \sim g^4 \int\limits_{(gT)^2} rac{d^2 p_\perp}{p_\perp^4} rac{p_\perp^2}{T^2} \sim rac{g^4}{T^2} \ln rac{1}{g}.$$

Motivation: Experimental data from RHIC \Rightarrow the quark-gluon plasma behaves as a perfect fluid:

 ${\cal L}_{\rm mfp}$ is a particle's mean free path, $\beta\equiv 1/{\cal T}$ is the inter-particle distance. For a dilute gas

 $rac{L_{
m mfp}}{eta} \ll 1,$

 $L_{
m mfp}\sim rac{1}{n\sigma_t},$ where $n\sim T^3$ is the particle-number density, σ_t is the Coulomb transport

cross section:

$$\sigma_t = \int d\sigma (1-\cos heta) \sim g^4 \int\limits_{(gT)^2} rac{d^2 p_\perp}{p_\perp^4} rac{p_\perp^2}{T^2} \sim rac{g^4}{T^2} \ln rac{1}{g}.$$

 \Rightarrow a strong contradiction with the experiment:

$$rac{\mathcal{L}_{\mathrm{mfp}}}{eta} \sim rac{1}{g^4 \ln rac{1}{g}} \gg 1.$$

D. Antonov, S. Domdey, H.-J. Pirner (HD) Thermodynamics of a heavy $Q\bar{Q}$ -pair near T_c

On the lattice, the two-point correlation function of Wilson lines (Polyakov loops) $L(\mathbf{R}) = \mathcal{P} \exp \left[ig \int_0^\beta dt A_4(\mathbf{R}, t) \right]$ in the singlet channel was measured (F. Karsch, O. Kaczmarek, P. Petreczky, F. Zantow, '05):

$$\frac{1}{3} \operatorname{Tr} \left\langle L(\mathbf{R}) L^{\dagger}(\mathbf{0}) \right\rangle = \frac{\mathcal{Z}_{Q\bar{Q}}(\mathbf{R},T)}{\mathcal{Z}(T)} =$$
$$= \frac{1}{\mathcal{Z}(T)} \int \mathcal{D}A^{a}_{\mu} \mathcal{D}\bar{\psi} \mathcal{D}\psi \frac{1}{3} \operatorname{Tr} L(\mathbf{R}) L^{\dagger}(\mathbf{0}) \exp\left[-\int_{0}^{\beta} dt \int d^{3}x \mathcal{L}_{QCD}(\mathbf{x},t)\right].$$

OWG meeting DESY Oct

On the lattice, the two-point correlation function of Wilson lines (Polyakov loops) $L(\mathbf{R}) = \mathcal{P} \exp \left[ig \int_0^\beta dt A_4(\mathbf{R}, t) \right]$ in the singlet channel was measured (F. Karsch, O. Kaczmarek, P. Petreczky, F. Zantow, '05):

$$\frac{1}{3} \operatorname{Tr} \left\langle L(\mathbf{R}) L^{\dagger}(\mathbf{0}) \right\rangle = \frac{\mathcal{Z}_{Q\bar{Q}}(\mathbf{R},T)}{\mathcal{Z}(T)} =$$
$$= \frac{1}{\mathcal{Z}(T)} \int \mathcal{D}A^{a}_{\mu} \mathcal{D}\bar{\psi} \mathcal{D}\psi \frac{1}{3} \operatorname{Tr} L(\mathbf{R}) L^{\dagger}(\mathbf{0}) \exp\left[-\int_{0}^{\beta} dt \int d^{3}x \mathcal{L}_{QCD}(\mathbf{x},t)\right].$$

The free energy of the static $Q\bar{Q}$ -pair at a fixed large separation $|\mathbf{R}| \ge 1.5 \,\mathrm{fm}$:

$$F(T) = -T \ln rac{\mathcal{Z}_{Q\bar{Q}}(\mathbf{R},T)}{\mathcal{Z}(T)}\Big|_{\mathbf{R}\,\mathrm{fixed}}$$

On the lattice, the two-point correlation function of Wilson lines (Polyakov loops) $L(\mathbf{R}) = \mathcal{P} \exp \left[ig \int_0^\beta dt A_4(\mathbf{R}, t) \right]$ in the singlet channel was measured (F. Karsch, O. Kaczmarek, P. Petreczky, F. Zantow, '05):

$$\frac{1}{3} \operatorname{Tr} \left\langle L(\mathbf{R}) L^{\dagger}(\mathbf{0}) \right\rangle = \frac{\mathcal{Z}_{Q\bar{Q}}(\mathbf{R}, T)}{\mathcal{Z}(T)} =$$
$$= \frac{1}{\mathcal{Z}(T)} \int \mathcal{D}A_{\mu}^{a} \mathcal{D}\bar{\psi} \mathcal{D}\psi \frac{1}{3} \operatorname{Tr} L(\mathbf{R}) L^{\dagger}(\mathbf{0}) \exp\left[-\int_{0}^{\beta} dt \int d^{3}x \mathcal{L}_{QCD}(\mathbf{x}, t)\right].$$

The free energy of the static $Q\bar{Q}$ -pair at a fixed large separation $|\mathbf{R}| \ge 1.5 \,\mathrm{fm}$:

$${\mathcal F}({\mathcal T}) = -{\mathcal T} \ln rac{{\mathcal Z}_{Qar Q}({\mathbf R},{\mathcal T})}{{\mathcal Z}({\mathcal T})}\Big|_{{\mathbf R}\,{
m fixed}}$$

The corresponding entropy $S(T) = -\frac{\partial F(T)}{\partial T}$ and the internal energy U(T) = F(T) + TS(T) exhibit maxima at $T \to T_c$, which cannot be explained by perturbation theory alone.

This talk is devoted to an attempt to explain these data theoretically.

Strategy and models:

• to determine an effective string tension $\sigma_{\text{eff}}(T)$ in quenched SU(3) QCD. Model: gluon chain = the $Q\bar{Q}$ -string with multiple valence gluons.

• with the use of $\sigma_{\text{eff}}(T)$ extrapolated to the unquenched case, to calculate S(T) and U(T) at $T < T_c$ for heavy-light mesons and heavy-light-light baryons, which are formed upon the string breaking and hadronization. Model: the relativistic quark model.

At low enough temperatures, the free energy of one string bit in the gluon chain > thermal gluon mass, which grows linearly with T. This situation changes at a certain temperature T_0 , which is smaller than T_c .

 $T < T_0 \Rightarrow$ an elastic string, gluons move collectively with it; $T > T_0 \Rightarrow$ a sequence of static nodes with adjoint charges, connected by independently fluctuating string bits.

To form the gluon chain, the string originating at Q performs a random walk to \overline{Q} over the lattice of such nodes. The large entropy of such a random walk eventually leads to the deconfinement phase transition.

OWG meeting DESY. Oct. 1

Figure: Gluon chain at $T < T_0$ and $T > T_0$. Below T_0 , valence gluons move together with the string, while at $T > T_0$ they become static. Color may change from one string bit to another.

Every string bit may transport each of the N_c colors \Rightarrow the total number of states of the gluon chain is $N_c^{L/a}$, where L is the length of the chain and a is the length of one bit.

The partition function of the random walk $(R \equiv |\mathbf{R}|)$:

$$\mathcal{Z}(R,T) = \sum_{n=-\infty}^{+\infty} \int_0^\infty \frac{ds}{(4\pi s)^2} \exp\left[-\frac{R^2 + (\beta n)^2}{4s} - \frac{s}{a}\left(\frac{\sigma}{T} - \frac{\ln N_c}{a}\right)\right]$$

The effective string tension and the critical temperature:

$$\sigma(T) = \sigma - \frac{T}{R} \ln \frac{\mathcal{Z}(R, T)}{\mathcal{Z}(R, T_0)} \bigg|_{R \to \infty} =$$
$$= \sigma + \frac{T}{\sqrt{a}} \left[\sqrt{\frac{\sigma}{T} - \frac{\ln N_c}{a}} - \sqrt{\frac{\sigma}{T_0} - \frac{\ln N_c}{a}} \right]$$
$$\Rightarrow T_c \bigg|_{N_c > 1} = \frac{\sigma a}{\ln N_c}.$$

D. Antonov, S. Domdey, H.-J. Pirner (HD) Thermodynamics of a heavy $Q\bar{Q}$ -pair near T_{c}

High-energy scattering data yield a = 0.302 fm (H.-J. Pirner *et al.*, '02) $\Rightarrow T_c = 270 \text{ MeV}$ in a perfect agreement with the modern lattice value (Bielefeld-Brookhaven group).

OWC meeting

High-energy scattering data yield a = 0.302 fm (H.-J. Pirner *et al.*, '02) $\Rightarrow T_c = 270 \text{ MeV}$ in a perfect agreement with the modern lattice value (Bielefeld-Brookhaven group).

 $\sigma(T_c) = 0 \Rightarrow$ the temperature below which the lattice of valence gluons does not exist:

$$T_0 = \frac{I_c}{\ln N_c + 1} \simeq 130 \,\mathrm{MeV}.$$

High-energy scattering data yield a = 0.302 fm (H.-J. Pirner *et al.*, '02) $\Rightarrow T_c = 270 \text{ MeV}$ in a perfect agreement with the modern lattice value (Bielefeld-Brookhaven group).

 $\sigma(T_c) = 0 \Rightarrow$ the temperature below which the lattice of valence gluons does not exist:

$$T_0 = \frac{I_c}{\ln N_c + 1} \simeq 130 \,\mathrm{MeV}.$$

An important result is the critical behavior

$$\sigma(T) \sim \sqrt{T_c - T} \quad {\rm at} \quad T \to T_c,$$

which is the same as in the Nambu-Goto model for the two-point correlation function of Polyakov loops (R.D. Pisarski and O. Alvarez, '82).

Comparing to the limiting case when string bits cannot alter color:

$$\sigma(T) = \sigma + \sqrt{\frac{\sigma T}{a}} \left(1 - \sqrt{\frac{T}{T_0}} \right) \sim (T_c - T) \text{ at } T \to T_c \Rightarrow$$

the universality class of the 2d (!) Ising model, defined by the critical exponent $\nu = 1$, cannot be the right one for the 4d Yang-Mills theory.

The same linear fall-off of $\sigma(T)$ with $(T_c - T)$ one finds also in the

• Hagedorn phase transition: $S = \sigma R / T_H$, $F = \sigma R - TS$;

• deconfinement scenario based on the condensation of long closed strings: $S = \ln N$, $N = (2d - 1)^{L/a}$ is the number of possibilities to realize on a hypercubic lattice a closed trajectory of length L, $F = \sigma L - TS \Rightarrow$ $T_c = \frac{\sigma a}{\ln(2d-1)}$, which yields 270 MeV only at $a = 0.54 \text{ fm} \simeq R/2$ (!).

Static $Q\bar{Q}$ -pair with light quarks at $T < T_c$

In the unquenched case, the $Q\bar{Q}$ -string breaks due to the production of a light $q\bar{q}$ -pair. Hadronization \Rightarrow formation of heavy-light mesons $(Q\bar{q})$, heavy-light-light baryons (Qqq), and their antiparticles. Considering the $(N_f = 2)$ -case, with light *u*- and *d*-quarks, and using the value $T_c = 200 \text{ MeV}$.

OWG meeting DESY

Static $Q\bar{Q}$ -pair with light quarks at $T < T_c$

In the unquenched case, the $Q\bar{Q}$ -string breaks due to the production of a light $q\bar{q}$ -pair. Hadronization \Rightarrow formation of heavy-light mesons $(Q\bar{q})$, heavy-light-light baryons (Qqq), and their antiparticles. Considering the $(N_f = 2)$ -case, with light *u*- and *d*-quarks, and using the value $T_c = 200 \text{ MeV}$.

Calculating the partition function of two noninteracting heavy-light mesons and two heavy-light-light baryons within the relativistic quark model, e.g.

$$H_{\bar{Q}q}=m_{\bar{Q}}+\sqrt{\mathbf{p}^2+m_q^2}+V(r),$$

where $V(r) = \sigma(T)r - C\sqrt{\sigma(T)}$, m_q is the constituent mass of a light quark, $m_q \simeq 300 \text{ MeV}$, and $C \simeq 1.65$ is fixed by the limit $T \to 0$.

Calculating further the entropies and the internal energies of these mesons and baryons together \Rightarrow

Static $Q\bar{Q}$ -pair with light quarks at $T < T_{c_1}$

Figure: The calculated entropy S(T) (full drawn curve) of two mesons and two baryons as a function of T/T_c with $T_c = 200 \text{ MeV}$. The stars show the lattice data (O. Kaczmarek and F. Zantow, '05).

<u>D. Antonov</u>, S. Domdey, H.-J. Pirner (HD) Thermodynamics of a heavy $Q\bar{Q}$ -pair near T_{c}

Static $Q\bar{Q}$ -pair with light quarks at $T < T_c$

Figure: The calculated internal energy U(T) (full drawn curve) of two mesons and two baryons as a function of T/T_c with $T_c = 200 \text{ MeV}$. The stars show the lattice data (O. Kaczmarek and F. Zantow, '05). • Gluon-chain model in quenched SU(N_c) QCD below $T_c \Rightarrow \sigma(T) \sim \sqrt{T_c - T}$ at $T \to T_c$; a correct estimate for T_c at $N_c = 3$.

• Unquenched case below T_c : the canonical partition function of two heavy-light mesons and two heavy-light-light baryons, which are formed after the string breaking, with $\sigma(T)$ for $N_f = 2 \Rightarrow$ entropy and internal energy reproduce well the corresponding lattice data for the static $Q\bar{Q}$ -pair.

To calculate S(T) and U(T) at $T > T_c$.

Model: thermodynamic perturbation theory in the Debye-screened color Coulomb potential of the $Q\bar{Q}$ -pair + the constraint that the particle density should vanish at $T = T_c$.

The non-Abelian interaction energy of a plasma constituent a with the $Q\bar{Q}$ pair:

$$\mathcal{V}(\mathbf{r}) = \mathcal{C}^{aQ}\mathcal{U}(|\mathbf{r}-\mathbf{x}_Q|) + \mathcal{C}^{aar{Q}}\mathcal{U}(|\mathbf{r}-\mathbf{x}_{ar{Q}}|),$$

where C^{aQ} and $C^{a\bar{Q}}$ are the corresponding products of SU(3) generators, and the interaction potential $\mathcal{U}(\mathbf{r})$ is a screened gluon exchange between the colored sources:

$$\mathcal{U}(\mathbf{r}) = 4\pi \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \frac{\alpha_s(k,T)}{k^2 + m_D^2} \mathrm{e}^{i\mathbf{k}\mathbf{r}}.$$

OWG meeting DESY Oc

The Debye mass is

$$m_D = \sqrt{\frac{N_c}{3} + \frac{N_f}{6}} gT,$$

where $g \simeq 2.5$ according to the selfconsistency equation $g = \sqrt{4\pi\alpha_s(m_D, T)}$ (J. Braun and H.-J. Pirner, '06). The running coupling $\alpha_s(k, T)$ increases for small momenta k, has a maximum at $k \simeq T$ and finally decreases at $k \to \infty$.

The perturbative expansion of the free energy

$$F = F_0 + F_{Q\bar{Q}} + \langle \mathcal{V}(\mathbf{r}_1, \ldots, \mathbf{r}_N) \rangle - \frac{1}{2T} \left(\langle \mathcal{V}^2(\mathbf{r}_1, \ldots, \mathbf{r}_N) \rangle - \langle \mathcal{V}(\mathbf{r}_1, \ldots, \mathbf{r}_N) \rangle^2 \right),$$

where

$$\langle \mathcal{O}(\mathbf{r}_{1},\ldots,\mathbf{r}_{N})\rangle = \operatorname{Tr}_{\text{singlet}}\left(\prod_{i=1}^{N}\int \frac{d^{3}\mathbf{p}_{i}d^{3}\mathbf{r}_{i}}{(2\pi)^{3}}\right)\mathcal{O}(\mathbf{r}_{1},\ldots,\mathbf{r}_{N})\mathrm{e}^{\beta(F_{0}-E_{0})},$$
$$E_{0} = \sum_{i=1}^{N}\sqrt{\mathbf{p}_{i}^{2}+m_{i}^{2}}, \ N = \sum_{a}N_{a}.$$

• The masses: $m_g = m_D/\sqrt{2}$,

$$m_q^2 = m_{\bar{q}}^2 = m_0^2 + 2gT\sqrt{\frac{N_c^2 - 1}{16N_c}} \left(m_0 + gT\sqrt{\frac{N_c^2 - 1}{16N_c}}\right)$$

(A. Peshier, B. Kämpfer, and G. Soff, 2000), where $m_0 = 30 \,\mathrm{MeV}$ is the current quark mass.

• To compare with the lattice results, we leave out the contribution F_0 of the quark-gluon plasma without the static $Q\bar{Q}$ -pair.

Estimating the influence on S(T) and U(T) of color-octet $q\bar{q}$ bound states, interacting with the $Q\bar{Q}$ -pair, by assuming that all quarks and antiquarks are bound in such states with the mass $2m_q$.

• The $Q\bar{Q}$ -interaction,

$$F_{Q\bar{Q}}(R,T) = -\frac{4}{3}\alpha_s \frac{\mathrm{e}^{-m_D R}}{R}, \quad \mathbf{R} \equiv \mathbf{x}_Q - \mathbf{x}_{\bar{Q}},$$

can be neglected because it is of the order of a few MeV at $R\simeq 1.5\,{
m fm}.$

- The term $\langle \mathcal{V}(\mathbf{r}_1, \ldots, \mathbf{r}_N) \rangle$ vanishes due to color neutrality of the plasma.
- The term

$$F_2 = -\frac{1}{2T} \langle \mathcal{V}^2(\mathbf{r}_1, \dots, \mathbf{r}_N) \rangle$$

is due to two interactions of $q\bar{q}$ and g with either Q or \bar{Q} , or with both of them:

$$F_2 = -\frac{n_g^{\text{eff}} + n_{q\bar{q}}^{\text{eff}}}{\pi T} \int d^3 \mathbf{q} \frac{\alpha_s(q,T)^2}{(q^2 + m_D^2)^2} \left(1 - e^{i\mathbf{q}\mathbf{R}}\right).$$

In order to get the overall coefficient in the last formula, one should:

• collect the color structure of a diagram where either g or $q\bar{q}$ exchanges by two gluons with Q or/and \bar{Q} ;

• project this structure onto the $Q\bar{Q}$ -singlet state by the projection operator $(P_{\text{singlet}}^{Q\bar{Q}})_{ij,kl} = \frac{1}{9}\delta_{ij}\delta_{kl} + \frac{2}{3}t_{ij}^{a}(t_{kl}^{a})^{T}$.

Calculating the *effective* densities $n_{g,q\bar{q}}^{\text{eff}}$ through the free ones

$$n_{g} = 12T \frac{m_{g}^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n} K_{2} \left(\frac{m_{g}}{T} n \right), \ n_{q\bar{q}} = 32T \frac{N_{f}^{2} m_{q}^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n} K_{2} \left(\frac{2m_{q}}{T} n \right).$$

Due to confinement, these densities vanish at $T = T_c \Rightarrow$

$$n_a^{\text{eff}}(T) = h(T)n_a \text{ with } h(T) = 1 - \exp\left(-\frac{T - T_c}{\lambda}\right).$$

Fixing the value of λ by comparing

$$P_{\mathrm{eff}}(T) \simeq h(T)^{4/3} \cdot rac{T}{V} \ln \mathcal{Z}_{\mathrm{grand}}$$

with the corresponding lattice data (F. Karsch, E. Lärmann, A. Peikert, 2000) \Rightarrow

$$\lambda = 80 \,\mathrm{MeV}.$$

Figure: The calculated entropy S(T) (full drawn curve) of a $Q\bar{Q}$ pair, interacting with $q\bar{q}$ bound states and gluons, as a function of T/T_c , with $T_c = 200$ MeV for two light flavors, at R = 1.5 fm. The dashed curve interpolates the lattice data (O. Kaczmarek, P. Petreczky, F. Zantow, '05).

Figure: The calculated internal energy U(T) in GeV (full drawn curve) of a $Q\bar{Q}$ pair, interacting with $q\bar{q}$ bound states and gluons, as a function of T/T_c , with $T_c = 200$ MeV for two light flavors, at R = 1.5 fm. The dashed curve interpolates the lattice data.

OWG meeting DESY Oct 17

S(T) and U(T) will hopefully become closer to the lattice results (especially at $T_c < T < 1.3T_c$) when the renormalization of Polyakov loops is taken into account.

REF: D.A., S. Domdey, H.-J. Pirner, Nucl. Phys. A 789 (2007) 357.