

- Searches
- Proton structure
- QCD tests
- Diffraction

Rare processes/Searches

Isolated Leptons: "The Event"

- "At the HERA electron-proton collider an event has been observed in the H1 detector which shows an isolated muon recoiling against a hadronic system, both of high transverse momentum."
- based on 4 pb^{-1}

K. Krüger

5

Isolated Leptons / W production

Isolated Leptons / W prod.

- nearly 1 fb⁻¹ of H1 and ZEUS data analysed
- analysis performed in common phase space
- combine cross sections for W production

The end of a 15 year long story

Single Top Production

H1 Results

Multi-Leptons

- H1+ZEUS combined cross-section of $\gamma \gamma \rightarrow \ell^+ \ell^-$ at high P_T
- Good agreement with SM prediction
- → will be first paper published by "H1 and ZEUS Collaborations"

*R*_{*n*}-violating SUSY

- resonant production of single squarks
- many different decay channels possible
- branching fractions depend on SUSY parameters: M_2 , μ , tan β
- search in many topologies →
- scan SUSY parameter space →

 $\tan \beta = 2$

Structure functions

- Q²≲5 GeV²: phenomenological models
- Q²≳2 GeV²: perturbative QCD, DGLAP evolution

Reduced cross-section:

$$\sigma_{r} \propto F_{2} - \frac{y^{2}}{1 + (1 - y)^{2}} F_{L}$$

Structure functions F₂ and F₁

- F₂ : valence and sea quarks
 - gluon enters through scaling violations
- F_L : direct sensitivity to the gluon density, suppressed by helicity factor

Structure functions

1993

- the first F_2 published by H1
- based on 22.5 nb⁻¹
- typical uncertainty 25%
- comparison with QCD and Regge parameterisations

K. Krüger

- New data published by H1
 - Medium Q^2 $12 \le Q^2 \le 100 \text{ GeV}^2$ Precision 1.3 to 2%
 - Low Q^2 $0.2 \le Q^2 \le 12 \text{ GeV}^2$ Precision 2 to 3%

DIS at low Q^2 and low x

- Full H1 data for low Q² published
- Precision 2–3%
- Combination of several H1 datasets
- Fits to power-law, fractal and dipole models
- F_L extracted using indirect methods, consistent with models

F₂ precision data

- Full HERA I data for $12 < Q^2 < 150 \text{ GeV}^2$
- Most precise F₂ data in this Q² range, uncertainty 1.3–2%
- Combination of two independent datasets
- New QCD fit, very good consistency with DGLAP prediction

Combination with ZEUS: further improvement of uncertainties

- H1PDF 2009 fit to all H1 HERA-I data
- Gain in precision compared to H1PDF2000

further improvements in HERAPDF0.2 fit (H1+ZEUS)

Measurement of F_L at low Q^2

First H1 F_L measurements shown in 2008: High Q² data: $100 \le Q^2 \le 800 \text{ GeV}^2$ Medium Q² data: $12 \le Q^2 \le 100 \text{ GeV}^2$

Direct Measurement of F_L : $\sigma_r \propto F_2 - (y^2/Y_+) \cdot F_L$ and $y=Q^2/(sx)$ Change y for fixed Q²,x by changing s

Rosenbluth plot: extract F_L from slope of σ_r as a function of y^2/Y_+

 F_L data at low Q^2

- Kinematic range $2.5 \le Q^2 \le 25 \text{ GeV}^2$
- Non-zero F_L is confirmed at low Q^2
- Consistent with QCD fits

 F_L dependence on Q^2

H1 Results

- Investigate F₂ contribution from beauty and charm
- b, c quarks: produced dominantly by boson-gluon fusion
- \rightarrow sensitivity to the gluon PDF
- Experimental methods:
 b and c hadron lifetime, D*

Lifetime analysis

- Lifetime analysis of full HERA II data
- $5 < Q^2 < 650 \text{ GeV}^2$
- Uncertainty:
 - 8% for F_2^c
 - 20% for F_2^{b}

Agreement with NLO QCD

D* production in DIS

- D* cross sections measured for $5 \le Q^2 \le 1000 \text{ GeV}^2$
- Good description by NLO calculation
- extrapolate to full phase-space, determine F^c₂

Combined F₂^c

 F_{2}^{cc}

- Consistent results from lifetime and D* analyses
- Combine the two measurements
- Significant improvement in precision
- Data constrain PDFs and heavy quark treatment in QCD fits

• Determination of α_s from jets at high Q^2

Determination of α_s

- Analysis of jet rates
- based on $\sim 0.3 \text{ pb}^{-1}$
- α_s is compared to QCD
 running and flat distribution

$$\alpha_{s}(M_{z}) = 0.123 \pm 0.018$$

High Q^2 jets and α

- Result: strong coupling extracted from H1 jet data
 - $\alpha_{\rm S} {=} 0.1168 {\pm} 0.0007 (exp) {\pm}^{0.0046}_{0.0030} (theo) {\pm} 0.0016 ({\rm PDF})$

- Experimentally most precise single measurement of α_{s} (0.6%)
- Theory (NLO) error dominated by scale uncertainties (3-4%)

Diffraction

- Leading proton cross-sections
- First measurement of F_L^{D}

Diffraction

- selection of events with rapidity gap
- first H1 measurement of the diffractive contribution to the proton structure function F₂
- based on 271 nb^{-1}

K. Krüger

Leading protons at HERA II

H1 Results

31

Direct measurement of F_{I}^{D}

- Measure $\sigma_{r}(X_{IP}, \beta, Q^{2})$ at fixed Q², X_{IP} as a function of β •
- Extract F_{μ}^{D} from σ_{r} data at different beam energies and low β
- Diffractive cross-section can be decomposed into structure functions: $\sigma_{\rm r}^{\rm D} \propto {\rm F}_2^{\rm D} - \frac{{\rm y}^2}{{\rm 1} + {\rm (1-v)}^2} {\rm F}_{\rm L}^{\rm D}$

The H1 F_L^D data

- First measurement of the longitudinal diffractive structure function F_L^{D}
- Non-zero F_{I}^{D} at 3σ
- Consistent with DPDF fit

Summary

- Many new results from H1
- → Milestones of the physics program are achieved
- Some Highlights
 - H1+ZEUS combined searches
 - Precision data on inclusive cross-sections and F_2
 - Precision normalized jet cross-sections and α_s
 - New measurement of F_{I} at low Q^2
 - First measurement of F_{L}^{D}
- Very productive phase, more results expected soon

Analyses for EPS-HEP

- searches
 - single top quark production
 - excited quarks; electrons; neutrinos
 - general search
 - isolated leptons, W production
 - cobined isolated leptons, W prod. 🕮 🛩
 - Multi-Leptons
 - combined Multi-Leptons
 - squarks in R-Parity violating SUSY
- inclusive
 - x-section at low Q^2 and x
 - x-section at medium Q²
 - HERA I combined x-section Image Provide the section
 - QCD fit of the combined data
 - F_L at low; medium; high Q^2
 - high Q^2 NC and CC
- heavy flavour
 - charm fragmentation into D*[±]
 - F_2^{c} and F_2^{b} using the H1 vertex detector
 - inelastic photoproduction of J/ψ
 - search for a D*p resonance
 - D^* in photoproduction; at low Q^2 ; large Q^2
 - beauty photoprod. with muons and jets
 - F_2^{c} from D* in DIS
 - comb. of F_2^{c} from D* and displaced tracks

- QCD tests
 - jets and α_s at high Q²; low Q²
 - incl. photoprod. of ρ^0 , K^{*0} and ϕ
 - strangeness at low Q² in DIS
 - $K^{*\pm}$ production at low Q² in DIS
 - 3- and 4-jet production at low x
 - isolated photons DIS; photoproduction
 - hadronic final state charge asymmetry
 - multiple interactions in photoprod.
- diffraction
 - Photons with Large Momentum
 - diffractive ρ and ϕ in DIS
 - DVCS and its Beam Charge Asym.
 - dijets and PDFs in Diffractive DIS
 - diffractive photoproduction of jets
 - diff. longitudinal structure function F_L^{D}
 - DIS with a leading proton
 - leading neutron production in DIS
 - Pomeron trajectory with ρ photoprod.

H1 and HERA

• ep Collider HERA

$$E_{p}$$
=920 GeV, E_{e} =27.6 GeV

 $\sqrt{s}=319 \text{ GeV}$

- Collider experiments H1 and ZEUS
- H1 Luminosity
 - 184 pb⁻¹ in e⁻p
 - 294 pb^{-1} in e^+p
- Low energy run:

12 pb⁻¹ at E_{p} =460 GeV

6 pb⁻¹ at $E_p = 575$ GeV

Excited Fermion limits

H1PDF 2009 QCD fit

- QCD fit to all H1 HERA-I data, NC and CC
- VFNS heavy flavour treatment (Thorne/Roberts)

HERAPDF0.2 Fit

 F_L as a function of Q^2

- Low Q² regions: largest spread in theoretical predictions
- Sensitivity to PDFs

Particle charge asymmetry

Momentum fraction in current hemisphere of the Breit frame $x_p=2p/Q$

- Measure rate of charged particles produced in the current hemisphere at high Q²>100 GeV²
- Asymmetry of positive to negative charged tracks, up to 0.2 at high x_p
- In agreement with fragmentation models

Leading protons at HERA II

Leading protons at HERA II

Leading neutrons at HERA II

- Leading neutrons: produced by π^+ exchange or fragmentation
- Forward Neutron Counter, 106m downstream the H1 main detector
- Structure function $F_2^{LN}(Q^2, x, x_L)$ is measured for $6 < Q^2 < 100 \text{ GeV}^2$

 Data described by π⁺ exchange +neutrons from fragmentation at low x₁

• Extract π structure function from data at high x_{L}

Leading neutrons at HERA II

- Leading neutrons: produced by π^+ exchange or fragmentation
- Forward Neutron Counter, 106m downstream the H1 main detector
- Structure function $F_2^{LN}(Q^2, x, x_L)$ is measured for $6 < Q^2 < 100 \text{ GeV}^2$

- Data described by π⁺ exchange +neutrons from fragmentation at low x₁
- Extract π structure function from data at high x_1

