ZEUS results for ICHEP 2010 + some combined H1&ZEUS plots

Jolanta Sztuk-Dambietz

University of Hamburg

on behalf of the **ZEUS** and also H1 Collaborations

HERA Symposium, Hamburg, July 13, 2010

ZEUS(+H1) Results Released after EPS 2009

ZEUS papers, ZEUS preliminaries, H1+ZEUS papers, H1+ZEUS preliminaries

QCD

- Inclusive jet cross sections in DIS
- Inclusive dijet cross sections in DIS
- Inclusive jet cross sections in PhP
- Inclusive dijet cross sections in PhP
- Dijet in PhP for events with a leading neutron
- Incl. jet measurements with different algorithms in DIS and PhP
- Scaled momentum spectra in DIS
- Scaled momentum distribution for K_0s and Λ
- Prompt photons in DIS

Heavy Flavours

 \succ F₂^c from D+

ZEUS

- Beauty and charm from inclusive secondary vertexing
- Beauty production in DIS using decays into electrons
- > D+/ Λ_c → K₀p/K₀p in DIS
- Excited charm mesons
- \succ F_2^{b} in dijet+muon events
- \blacktriangleright H1+ZEUS combined F_2^{cc}
- > PDF fits including the combined F_2^{cc}

EW, Structure Functions and PDFs

- CC e+p cross section with a polarized e+ beam
- NC e-p at high x
- Extension of the measurement of high-y NC cross-sections to lower Q²
- Combined NC/CC HERAI data and QCD fits
- Combined H1 and ZEUS low energy data
- QCD fits with low energy data
- Combined high-Q² cross-sections from HERAII
- H1+ZEUS high pt multi-leptons
- H1+ZEUS high pt isolated leptons

Diffraction

- QCD analysis of diffractive data
- Diffractive J/Psi at high t
- Di-pion production
- Measurement of total photoproduction cross-section

First H1&ZEUS combined papers: multi- and isolated leptons

Analysis based on the full HERA sample, L~1 fb⁻¹

High p_T multileptons

QED process → precise SM predictions → Look for deviations

Good agreement with SM predictions

High p_T isolated leptons

Deep Inelastic Scattering

NC: Sensitive to gluons, valence guarks and see guarks

$$\frac{d^{2}\sigma_{NC}^{\pm}}{dxdQ^{2}} \approx \frac{2\alpha\pi^{2}}{xQ^{4}} \begin{bmatrix} Y_{F_{2}} \mp Y_{xF_{3}} - y^{2}F_{L} \end{bmatrix} \qquad Y_{\pm} = \frac{1}{2}(1\pm(1-y^{2}))$$

$$F_{2} \propto \sum_{i} e_{i}^{2}(xq_{i} + x\overline{q}_{i}) \qquad xF_{3} \propto \sum_{i} xq_{i} - x\overline{q}_{i} \qquad F_{L} \propto \alpha_{s} xg$$
Directly sensitive to quark distribution
Gluon from scaling violations.
$$Valence quarks$$
Gluon at NLO

Use 'reduced cross section' to remove kinematic dependence:

ZEUS

Directly

$$\bullet \sigma_r = \frac{xQ^2}{2\alpha\pi^2 Y_+} \frac{\mathrm{d}^2 \sigma_{NC}^{\pm}}{\mathrm{d}x \mathrm{d}Q^2} \approx F_2$$

CC: Flavour decomposition

$$e-p: \quad \frac{d^{2}\sigma_{CC}^{-}}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right) \left[u + c + (1 - y)^{2} (\overline{d} + \overline{s}) \right]$$

$$e+p: \quad \frac{d^{2}\sigma_{CC}^{+}}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right) \left[\overline{u} + \overline{c} + (1 - y)^{2} (d + \overline{s}) \right]$$

High-Q² CC DIS with a longitudinally polarized e⁺ beam

ZEUS

Combination of the high-Q² data

Extension of the published combination of the HERA I data:

Method of combination:

 same as for previous HERA data combinations (see talk by K. Daum)

Used data:

```
✓ HERAI as in DESY-09-158
✓ HERAII:
H1, HERA II (high Q<sup>2</sup>, P=0)
CC e-p
CC e+p
NC e-p
CC e+p
NC e+p
```

Combined HERAI+II CC data

CC e⁺p/e⁻p allows to disentangle contributions of d and u quarks
Probes flavor structure of the proton

ZEUS

$$\tilde{\sigma}_{cc}^{e-p} \sim u + c + (1-y)^2 (\overline{d} + \overline{s})$$

e⁺p most sensitive to d(x,Q²) e⁺p valence quarks suppressed by factor (1-y)²

e⁻p most sensitive to u(x,Q²) 10 x higher statistic than in DESY-09-158

QCD analysis based on the combined data comming soon!

NC cross-sections at high x

HERA II e⁻p data (L=187 pb⁻¹) > Q²>450 GeV²

0,1 and multi- jet events

new x reconstruction method \$
 leading to better resolution

Significantly improved precision to previous ZEUS NC e⁻p measurement

Sensitivity to the high-x region

PDF fits including low energy data

NLO PDF distribution at starting scale Q²=1.9 GeV²

ZEUS

Combined F_L data vs HERAPDF fits:

- with or without Q² cut
- -various HFL treatments
- NNLO with different α_s(M_z) values

Predictions at NNLO seem to return in a better description of the F_L data

NNLO PDF distribution

High, medium and low energy cross-section at high y

HERA NC cross sections from data collected at E_p =920, 460 and 575 GeV for the F_L determination used in PDF fits

New ZEUS measurement can be used for further combination and QCD analysis!

Heavy Flavours contribution to F₂

- Beauty production in DIS
- Charm production in DIS -

F₂ Structure Functions

Charm and beauty production

Powerful test of perturbative QCD

ZEUS

- Multi-scale problem (mass, p₁, Q²)
- > Structure functions F_2^c and $F_2^b \rightarrow$ direct test of the gluon in the proton.
- Check of the QCD fits dependence on the heavy flavour treatment (see talk by K. Daum)

Beauty production at ZEUS

Events with muon and jets, L=114pb⁻¹

 $Q^2 > 2 \text{ GeV}^2$, 0.05 < y < 0.7E₁(Jet) > 5.0 GeV, -2.0 < η (Jet) < 2.5

DIS events, L=363pb⁻¹
 ep → e'bX → e' e_{sl} v_eX'
 using the semileptonic e[±]

 $\begin{array}{l} Q^2 > 10 \; GeV^2, \;\; 0.05 < y < 0.7 \\ P_T(Jet) > 2.5 \; GeV, \;\; \left| \; \eta(Jet) \; \right| < 2.0 \end{array}$

Precision of the data is limited

→ will improve using jets from secondary vertices.

Beauty in DIS with secondary vertices

Beauty reconstructed from jets with secondary vertices. $5.0 \text{ GeV}^2 < Q^2 < 1000.0 \text{ GeV}^2$, 0.02 < y < 0.7 $E_T(\text{Jet}) > 5.0 \text{ GeV}$, $-1.6 < \eta(\text{Jet}) < 2.2$ ZEUS-prel-10-004

ZEUS

D⁺ in DIS

Secondary Verte

Decay Length

Primary Vertex

Beam spot

D⁺ reconstructed using lifetime information. L=323 pb⁻¹.

ZEUS

 $D^+ \rightarrow K^- \pi^+ \pi^+ (+ \text{ c.c.})$

Extraction of F_2^c

ZEUS-prel-10-005

Sensitivity to the gluon.

Data from H1 and ZEUS combined (see K. Daum talk) → Precision is now 5-10%.

Can be improved by adding new measurements (see comparison with new D⁺ data)

The results are well described by HERAPDF1.0 prediction

E G

QCD and Hadronic Final States

- Inclusive (di)jets in NC DIS & PhP
- Performance of different jet algorithms relevant at LHC

Jet cross-sections

Stringent test of perturbative QCD

Sensitivity to the gluon in the proton, precise input to QCD fits.

Extract α_s with high precision, check the scale dependence within a single experiment and in different regimes.

Inclusive jets and dijets in DIS

Jets at high-Q² reconstructed with k_T algorithm

ZEUS

Good agreement with QCD at NLO

Inclusive jets and dijets in PhP

High E_T jets reconstructed with k_T algorithm

ZEUS

Jets in PhP: non perturbative effects

Check non perturbative effects (low E_T jet) important for LHC

ZEUS

Jets in PhP: non perturbative effects

Check non perturbative effects (low E_T jet) important for LHC

ZEUS

25

Jet algorithms

Jet reconstruction relies on jet algorithms.

Jet algorithms should not be sensitive to soft particle emission (infrared safe) and collinear particle splitting (collinear safe).

Cone algorithms normally used in hadron-hadron collisions are not safe at all order in QCD.

New developments: anti-k₁ (Cacciari, Salam, Soyez 08) SISCONE (Salam,Soyez 07) both safe at all orders

Tested on data for the first time at ZEUS

Example test on the same MC event:

Anti- k_T is similar to k_T but gives jets of regular shape, as SIScone (good i.e. for detector calibration, underlying events subtraction).

Anti-k_T and SIScone jet algorithms

Reanalysis of inclusive jets in DIS and PhP

ZEUS-pub-10-001

Jets in DIS

- Data very well described by NLO and all the algorithms.
- Similar precision (slightly worse for SIScone)
- > Ratios evaluated up to order α_s^3

ZEUS

Data very well described by NLO and all the algorithms.

α_s running from PhP to DIS

Running of the coupling constant with the scale **tested from the low to the high Q² regime**.

ZEUS

New precise α_s measurements from DIS and PHP in agreement with the world average.

ZEUS-prel-10-012

Dipion diffractive electroproduction

Electroproduction of $V = (\rho(770); \rho'(1450); \rho''(1700))$ mesons and their subsequent decay into $\pi + \pi$ - pair has been studied in 2 π invariant mass range 0.4 < $M_{\pi\pi} < 2.4 \text{ GeV}$

including interference term

Q² dependence of all parameters were measured

ZEUS

Energy dependence of σ_{τοτ} (γp)

The energy dependence of the total photon-proton cross-section is determined using data of three different proton beam energies \rightarrow

Photon-proton center-of-mass energies $W_{yp} = 201 \text{ GeV}, 224 \text{ GeV} \text{ and } 285 \text{ GeV}$ _{tot} (arb. units) 1.02 > Normalized so to σ_{tot} (HER)=1 1.00 >Inner error bars: 0.98 #sigtot events statistical >Outer error bars: 0.96 all uncert. (B-H subtraction, flux measurement, lumi) 0.94 0.92 0.90 Model for energy dependence: **Donnachie-Landshoff** 200 220 $\sigma_{tot} = C W^{2\epsilon} + B W^{-2\eta}$ (W = W_{yp}) At high W_{vp} second term is negligible

ZEUS

Totally independent of low $W_{\gamma\rho}$ dependence, measurements

ZEUS-prel-10-011

Conclusion

- ZEUS is a lively collaboration:
- Publishing papers

7FUS

- Many new preliminary results
- New ZEUS+H1 combination measurements are providing precision data used as input in QCD fits.
- The analyses of the HERAII on NC, CC, jets and heavy flavour processes are extended to the full data statistics allowing improved precision of the results.
- The new inclusive, jets and heavy flavour data are now investigated in the context of QCD fits, allowing more stringent test on the fit formalism.

Extra slides

The anomalous behavior of V'(2S)/V(1S) production ratio with Q² was predicted in works of J. Nemchik, B. Kopeliovich, N. Nikolaev, B. Zakharov (hep-ph/9605208)

H1 & ZEUS: Hermetic multi-purpose detectors

Liquid Argon Calorimeter

optimized for precision measurement of the scattered lepton

$$\sigma_{\rm E}/{\rm E} = 11\%/\sqrt{\rm E}$$
 (ele)
 $\sigma_{\rm E}/{\rm E} = 50\%/\sqrt{\rm E}$ (had)

Uranium-scintillator Calorimeter

optimized for precision measurement of the hadronic final state

$$\sigma_{\rm E}/{\rm E} = 18\%/\sqrt{\rm E}$$
 (ele)
 $\sigma_{\rm E}/{\rm E} = 35\%/\sqrt{\rm E}$ (had)³⁶

Deep Inelastic ep Scattering

Neutral Current

Charged Current

$$x = \frac{Q^2}{2P \cdot (k - k')}$$

$$y = \frac{P \cdot (k - k')}{P \cdot k}$$

 $Q^2 = -(4 - momentum of propagator)^2$ the virtuality of the exchanged boson.

x – fractional momentum of proton carried by struck quark q

y – fractional energy of the incoming lepton transferred to the proton in the proton's rest frame (inelasticity)

Deep Inelastic ep Scattering

C: Sensitive to gluons, valence quarks and see quarks

$$\frac{d^{2}\sigma_{NC}^{\pm}}{dxdQ^{2}} \approx \frac{2\alpha\pi^{2}}{xQ^{4}} \left[YF_{2} \mp Y_{x}F_{3} - y^{2}F_{L} \right] \qquad Y_{\pm} = \frac{1}{2}(1\pm(1-y^{2}))$$

$$F_{2} \propto \sum_{i} e_{i}^{2}(xq_{i} + x\overline{q}_{i})$$

$$xF_{3} \propto \sum_{i} xq_{i} - x\overline{q}_{i}$$

$$F_{L} \propto \alpha_{s}xg$$
Gluon from scaling violations.
$$Valence \text{ quarks}$$

$$Gluon \text{ at NLO}$$

Use 'reduced cross section' to remove kinematic dependence:

$$\bullet \sigma_r = \frac{xQ^2}{2\alpha\pi^2 Y_+} \frac{\mathrm{d}^2 \sigma_{NC}^{\pm}}{\mathrm{d}x \mathrm{d}Q^2} \approx F_2$$

CC: Flavour decomposition

$$e-p: \quad \frac{d^{2}\sigma_{CC}^{-}}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right) \left[u + c + (1 - y)^{2} (\overline{d} + \overline{s}) \right]$$
$$e+p: \quad \frac{d^{2}\sigma_{CC}^{+}}{dxdQ^{2}} = \frac{G_{F}^{2}}{2\pi} \left(\frac{M_{W}^{2}}{M_{W}^{2} + Q^{2}} \right) \left[\overline{u} + \overline{c} + (1 - y)^{2} (d + s) \right]$$

Inclusive cross section combination

H1 & ZEUS have combined inclusive DIS cross sections from HERA I data => New average with L=240 pb⁻¹

Combined H1 & ZEUS data

Unprecedented precision due to cross calibration of detectors

Data show good consistency

 $\chi 2/n_{dof} = 637/656$

Precision:
 2% for 3<Q²<500 GeV²
 1% for 20< Q²<100 GeV²

Combination of H1 & ZEUS HERA I data provides a model independent tool to study consistency of the data and to reduce systematic error!

F2 with combined e+p NC

> F_2 (x,Q²) shows strong rise as x->0, the rise increases with increasing Q² >Data well described by QCD fit from Q²=2 to 30000 GeV²

HERA combined NC data

> Data show strong scaling violations at low $x \rightarrow$ large gluon density

NC data at high-Q2: Z_γ interference destructive (e+p) and constructive (e-p)

H1 and ZEUS

Good agreement between data and NLO QCD fit!

HERA combined CC data

CC e⁺p/e⁻p allows to disentangle contributions of d and u quarks
Probes flavor structure of the proton

HERA-I QCD fit - HERAPDF1.0

- Fit uses combined H1&ZEUS NC, CC data only
- > DGLAP equations at NLO in MSbar scheme
- Parameterize parton distribution functions at starting scale and evolve with Q².

Thorne-Roberts Variable Flavour Number Scheme (as for MSTW08): →takes the quark masses into account

PDFs at the starting scale parameterised as: $xf(x,Q_0^2) = Ax^B(1-x)^C(1+Dx+Ex^2)$ where xf = xu_{val}, xd_{val}, xg, xUbar, xDbar

PDF	A	В	C	D	E
xg	sum rule	FIT	FIT	-	-
$x u_{val}$	sum rule	FIT	FIT	-	FIT
xd_{val}	sum rule	$=B_{u_{val}}$	FIT	-	-
$x\overline{U}$	$\lim_{x\to 0} \overline{u}/\overline{d} \to 1$	FIT	FIT	-	-
$x\overline{D}$	FIT	$=B_{\overline{U}}$	FIT	-	-

Scheme

Order

 Q_{min}^2

 M_c

 M_b

 $\alpha_S(M_Z)$

 Q_{0}^{2}

Evolution

 $f_s = s/D$

Renorm. scale

Factor. scale

Results: 10 parameters for central fit χ2/n_{dof} = 574/582 TRVFNS

QCDNUM17.02

NLO

 1.9 GeV^2

0.31

 Q^2

 Q^2

 3.5 GeV^2

0.1176

 $1.4 \, \mathrm{GeV}$

4.75 GeV

HERA-I QCD fit - uncertainties

Experimental uncertainty:

Take into account experimental errors including, correlations bin to bin and between experiments/datasets => $\Delta \chi^2$ =1

Model uncertainty includes theoretical errors:

Variation	Standard Value	Lower Limit	Upper Limit	
f_s	0.31	0.23	0.38	
m_c [GeV]	1.4	$1.35^{(a)}$	1.65	
m_b [GeV]	4.75	4.3	5.0	
Q_{min}^2 [GeV ²]	3.5	2.5	5.0	
Q_0^2 [GeV ²]	1.9	$1.5^{(b)}$	$2.5^{(c,d)}$	
		$^{(a)}Q_0^2$	$= 1.8$ ${}^{(c)}m_c = 1.6$	
$^{(b)}f_s = 0.29$ $^{(d)}f_s = 0.3$				

➢Parameterisation uncertainty:

Vary parameterisation of PDFs at starting scale by adding in extra parameters in the fit

HERAPDF1.0 at Q2=10GeV2

High precision for sea and gluon at low x
 Reasonable precision for valence at high x
 Gluon error relatively large at high x

HERAPDF1.0

Distributions for valence quarks, see and gluons

Gluon and see distributions are scaled by factor 20

Small errors on gluon & see distributions at LHC energies enables precise predictions for LHC cross sections

HERAPDF1.0: Crosscheck with TeVatron data

HERAPDF1.0 describes TeVatron data up to the high-Et jet production!

Tevatron Jet Cross Sections 2.5 Ratio to HERAPDF1.0 $|v^{jet}| < 0.4$ $0.4 < \mathsf{ly}^{\mathsf{jet}}\mathsf{l} < 0.8$ 2 1.5 0.5 2.5 $0.8 < |y^{jet}| < 1.2$ $1.6 < |y^{jet}| < 1.6$ 2 1.5 0.5 2.5 $1.6 < ly^{jet} l < 2.0$ $2.0 < |y^{jet}| < 2.4$ 2 1.5 HERAPDF1.0 1 D0 RunII 0.5 0 200 400 0 200 400 600 600 P_T^{jet} [Gev/c]

Ratio of D0 high Et jet cross-section to HERAPDF1.0 prediction:

- Total PDF uncertainty blue
- PDF experimental red
- Systematic experimental error yellow₄₉

HERAPDF1.0: Impact on LHC

Predictions for the W/Z production cross sections using HERAPDF1.0 (including experimental, model and parameterisation uncertainties) W and Z rapidity distributions

v

Kinematic plane

QCD evolution extrapolates HERA measured PDFs to LHC

PDF's obtained in low x regime at HERA are applicable to LHC

HERA data cover LHC central rapidity range for M > 100 GeV

HERA combined NC e+p at very low Q2

Data shown in very low Q² region (0.05-1.5 GeV2)

pQCD not expected to work in the very low Q² region.

PDF from HERAPDF1.0 at low Q2

H1 and ZEUS

PDF from HERAPDF1.0

Distributions for valence quarks, see and gluons (logarithmic scale)

Gluon density vs different α_s values

HERAPDF1.0 vs. HERAPDF1.0 ACOT scheme

Distributions for valence quarks, see and gluons

CDF jet data with HERAPDF1.0

HERAPDF1.0 predictions for W/Z production at LHC

These are at 14TeV but 10TeV and 7TeV exist

These show the full uncertainty bands of HERAPDf1.0 and compare to CTEQ66 and MSTW08 central values

Procedural Uncertainties

1. Additive vs Multiplicative nature of the error sources

Only normalizations uncertainties are taken as multiplicative (=> Typically below 0.5%, a few % at high-Q2) A general study of the possible correlated systematic uncertainties between H1 and ZEUS has been performed:

- Identified 12 possible uncertainties of common origin
- compared 2¹² averages taking all pairs as corr/uncor in turn Mostly negligible except for:

2. Correlated syst. uncert. for the photoproduction background

(Typically below 0.5%, but larger at high-y) 3. Correlated syst. uncert. for the hadronic energy scale

(Typically below 0.5%, significant only at low-y)

