HERA SYMPOSIUM 2010

Recent results from H1

Karin Daum - Wuppertal/DESY on behalf of the H1 collaboration

and on behalf of the H1 and ZEUS collaborations

H1 Harvest 2009/10

Structure Functions & PDFs

•x-section at medium Q² & H1PDF2009 •x-section at low Q² •Polarised CC x-section high Q² •Polarised NC x-section high Q² •Combined EW+QCD Fit •FL at low, medium and high Q² •x-section HERA I & HERAPDF1.0 •HERA combined x-section @ high Q² * •HERA combined F_L *

Diffraction

ZEUS

Callo Zeus

ZEUS

ZEUS

alla

•Longitudinal structure function F_L^D •Leading neutron production in DIS: F_2^{LN} • F_2^D with LRG • F_2^D with protons in FPS • F_2^D with protons in VFPS •Jet production in DIS protons in FPS •Di-jet photo-production with LRG •Di-jet production in DIS using VFPS •DVCS and charge asymmetry •Diffractive ρ and ϕ in DIS •Photons with large p_T in diffraction

* See Jola's talk

•Forward photons in FNC

Single top quark production
Exited quarks
Generic search for new phenomena
L-violating Leptoquarks
R-parity violating Squarks
Isolated leptons and W production
Contact interactions
HERA combined analysis of multileptons *

Hadronic Final State

•Jet production and $\alpha_s \ensuremath{\mathbb{C}}$ medium $\ensuremath{\mathbb{Q}}^2$ •Jet production and $\alpha_s \ensuremath{\mathbb{C}}$ high $\ensuremath{\mathbb{Q}}^2$ •Prompt photons in γp •Forward jet correlations $\ensuremath{\mathbb{C}}$ medium $\ensuremath{\mathbb{Q}}^2$ •Charged particle production •Charge Asymmetry $\ensuremath{\mathbb{C}}$ high $\ensuremath{\mathbb{Q}}^2$ •Photo-production of $\ensuremath{\rho}^0, K^{*0}$ and $\ensuremath{\varphi}$ mesons •Strangeness production $\ensuremath{\mathbb{C}}$ medium $\ensuremath{\mathbb{Q}}^2$ •K⁰ production $\ensuremath{\mathbb{C}}$ high $\ensuremath{\mathbb{Q}}^2$

Heavy Flavour

•Inelastic J/ ψ in γp and DIS •Charm fragmentation into D* in DIS •Photo-production of D* + di-jets •D* and $F_2^c \oplus$ high Q^2 •D* @ medium Q^2 •F_2^b and F_2^c with vertex detector •HERA combined F_2^c •Charm and beauty jets in DIS

HERA Symposium July, 13th 2010

Structure Functions

NC: $e^{\pm}p \rightarrow e^{\pm}X$

$$\frac{\mathrm{d}^2 \sigma_{NC}}{\mathrm{d}x \mathrm{d}Q^2} = \frac{2\pi \alpha_{em}}{xQ^4} \Big[Y_+ \widetilde{F}_2 \mp Y_- x \widetilde{F}_3 - y^2 \widetilde{F}_L \Big] \equiv \frac{2\pi \alpha_{em}}{xQ^4} \widetilde{\sigma}_{NC}^{\pm}$$

with $Y_{\pm} = 1 \pm (1 - y^2)$

 $\textit{CC: } e^{\pm}p \rightarrow \upsilon X$

$$\frac{d^2 \sigma_{CC}}{dx dQ^2} = \frac{G_F^2}{4\pi x} \left[\frac{m_W^2}{Q^2 + m_W^2} \right]^2 \left[Y_+ W_2 \mp Y_- x W_3 - y^2 W_L \right]$$

$$W_2^- = x(u + c + \overline{d} + \overline{s}) \text{ sensitive to } u_v @ \text{ high } x$$
$$W_2^+ = x(\overline{u} + \overline{c} + d + s) \text{ sensitive to } d_v @ \text{ high } x$$

HERAPDF1.0

Functional form of PDF at starting scale Q_0 : $xf(x)=Ax^B(1-x)^C(1+Ex^2)$ $Q_0=1.9 \ GeV^2$, $f_s=0.31$, $m_c=1.4 \ GeV$, $m=4.75 \ GeV$, $a_s(M_Z)=.1176$ Heavy quark treatment: GMVFNS RT2008 Sum rules \Rightarrow 10 free parameters (E \neq 0 only for u_v)

HERAPDF1.0

JHEP1001(2010)109

Good description of HERA I data χ^2 /NDF=637/656

HERAPDF1.0 and Tevatron 💷

(only PDF uncertainties shown)

HERAPDF1.0 based on HERA I data provides a good description of Tevatron high ${\rm E}_{\rm T}$ jet cross sections

Cross section predictions

CC at high Q^2 (HERA II)

H1prelim-09-043

Cross section:
$$\sigma_{
m r}^{\pm} \propto \left(l \pm P_{
m e} \right) W_2^{\pm}$$

CC at high Q² (HERA II)

CC data (HERA I+II) will improve precision especially of u_v

NC data (HERA I+II): improvements for d_v/u_v@ large x in HERAPDF expected

EW+QCD Fit to NC+CC Data

Simultaneous EW+QCD fit to HERA I+II data including data with polarised electron beams \Rightarrow u and d quarks couplings to Z⁰

•Improved results on v_u due to polarisation of HERA II data •Resolve ambiguity on LEP solutions for down quark coupling

Charm Contribution F_2^c to the Proton

Dominant production mechanism: Boson-gluon-fusion

Charm structure function:

$$\frac{d^2 \sigma_{c\bar{c}}}{dQ^2 dx} = \frac{2\pi\alpha}{xQ^4} \left[\left(1 + (1-y)^2 \right) F_2^{c\bar{c}} - y^2 F_L^{c\bar{c}} \right]$$

tagging via -D mesons, -semileponic decays -displaced tracks

- •Large contribution to F_2 naïve limit: $e_c^2 / \Sigma e_q^2 = 4/11$
- •Sensitive to gluon density
- •Multiple scale problem (m_Q, p_T, Q^2)

•Different NLO schemes:

- -FFNS: charm massive, 3 active flavours -ZMVFNS: m_=0
- -GMVFNS: $m_c \neq 0 @ \mu \approx 0$, $mc=0 @ \mu > 0$ (RT, ACOT)

 $0.0 \frac{10^{-4}}{10^{-3}} \frac{10^{-1}}{10^{-1}} \frac{10^{-4}}{10^{-4}} \frac{10^{-3}}{10^{-2}} \frac{10^{-1}}{10^{-4}} \frac{10^{-3}}{10^{-2}} \frac{10^{-1}}{10^{-1}} \frac{10^{-3}}{10^{-2}} \frac{10^{-1}}{10^{-1}} \frac{10^{-2}}{10^{-1}} \frac{10^{-2}}{10^{-1}}$

1994 data 3pb⁻¹

HERA combined F₂^c

H1prelim-09-171 ZEUS-prel-09-015

ZEUS

Input: 9 different data sets

54 sources of systematic uncertainties considered

Precision of combined result: 5-10%

HERAPDF1.0 with F_2^c (1) F_2^c

Problems of including F₂^C: different schemes of heavy quark treatment choice of charm quark mass

GMVFNS favours m_c=1.65 GeV - FFNS favours m_c=1.4 GeV

HERAPDF1.0 with F_2^c (1) F_2^c

H1prelim-10-045 ZEUS-prel-10-00915

NNLO gives best description of data also in the region excluded from fit

Charm and Beauty Jets

H1prelim-10-073

Tagging of charm/beauty via lifetime - Inclusive k_t -jets E_T^{jet} >6 GeV

Jet Production at low Q

10

9

μ**, [GeV]**

8

EPJ C67(2010)1

$\alpha_{\rm s}$ from Jets in DIS

High Q²: $\alpha_s(M_Z)=0.1168 \pm 0.0007(exp.) \stackrel{+0.0046}{_{-0.0030}}$ (th.) $\pm 0.0016(PDF)$

Forward Jet Correlations

•Cross section described best by BFKL-type model (CDM) • $\Delta \phi$ shape: initial differences washed out by parton showers

Diffraction

At HERA: 10% diffraction @ low x in DIS Additional kinematic variables:

- -x_{IP} momentum fraction of the proton carried by the colourless exchange
- $-\beta$ momentum fraction of the colourless exchange carried by the struck quark
- -t momentum transfer at the proton vertex

Experimental methods:

-Large rapidity gap selection (LRG) -Leading proton (neutron) measurement

Structure of colourless exchange? Validity of factorisation ansatz?

$F_2^{D(3)}$ with LRG

$F_2^{D(4)}$ with protons in FPS

Karin Daum

F₂^{D(3)} Summary

Excellent coverage of kinematic plane
Results agree well in regions of overlap
DPDF Predictions from LRG agree nicely with FPS and VFPS data

Clearly non-zero F^D
 NLO predictions based on DPDF (extrapolated) agree with data well

Di-Jets with LRG in γp e(k') e(k)、 e(k') e(k) data / theory data / theory H1 (a) (b) 1 γ* (q) γ* (q) iet emnant M₁₂ X(P_x) ZIP iet 0.5 0.5 M₁₂ X(P_v) iet mnar GAP remnant \mathbf{Z}_{IP} 0.2 0.4 0.6 0.8 10 12 14 8 6 GAP Y (P_) E^{jet1} [GeV] p(P) $\mathbf{x}_{\gamma}^{\text{jets}}$ Y (P_) p(P) (a) (b) data / theory (c) H1 data / theory NLO H1 2006 Fit $B \times (1+\delta_{hadr})$ data correlated uncertainty tot NLO H1 2007 Fit Jets × (1+δhadr) data $= 0.58 \pm 0.21$ 0.5 NLO ZEUS SJ \times 1.23 \times (1+ δ_{hadr}) tot NLO 0.2 0.4 0.6 0.8 DESY-10-043 Z^{jets}

•Diffractive Di-jet photo-production suppressed w.r.t. NLO •Proposed modifications to NLO fails in differential cross sections •Hint of a rise in $\sigma_{data}/\sigma_{NLO}$ with increasing E_T^{jet}

H1prelim-10-013

NLO reproduces diffractive di-jet data well in DIS Vertex factorisation only in the presence of a hard scale ?

Lepton Flavour Violation

•Complete HEAR I+II data •Limit on all 3 generations in unconstrained MSSM and mSUGRA

Summary

- 3 years after HERA shutdown H1 analyses/publications continue at full speed
 Since last HERA symposium: 14 publications, ≥20 preliminaries
- •Data and detector understood to very high precision Many uncertainties understood to the per mille level
- •Activities in the HERA combination working groups is of utmost importance to reach the ultimate precision
- HERA was a QCD precision machine as LEP was for electroweak physics

We are building the H1 and HERA legacy now and in the coming years

CC at high Q² (HERA II)

CC+NC at high Q² (HERA II)

HERA combined F₂^c

ZEUS

Prompt photons in γp

$F_2^{D(3)}$ with protons in VFPS

VFPS: good acceptance for $|t| < 0.25 \text{ GeV}^2$ and $0.009 < x_{IP} < 0.026$ precise reconstruction of β and x_{IP} H1prelim-10-014

VFPS data agree well with LRG and FPS measurements

HERA Symposium July, 13th 2010

Charge Asymmetry @ high Q²

PL B681(2009)125

Karin Daum