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Motivation
Accelerator based THz source for pump-probe experiments at the European XFEL

X.-K. Li          |         M-seminar

THz source requirements:

• Tunable → 𝑓 = 0.1…20 THz (𝜆𝑟𝑎𝑑 = 3mm…15 μm)

• Various temporal and spectral patterns, polarization - ideally narrow-band

→ ΤΔ𝜔
𝜔~0.1…0.01

• High pulse energy 𝑊 > 10 μJ (μJ - hundreds of μJ - mJ , depending on 𝑓)

• Time jitter → from CEP (few fs) stable for field driven to "intensity" driven 

dynamics (~longest pulse duration) → 𝜎𝑡~ ൗ0.1
𝑓

• Repetition rate to follow European XFEL → (600 μs…900 μs) ×

0.1…4.5 MHz × 10Hz = 27000…40500 pulses/s

Transverse profile 

correction

European XFEL (~3.4 km)
Pump 

& 

Probe

X-ray

THz

PITZ-like accelerator based 

THz source (~30 m)

E.A. Schneidmiller, M.V. Yurkov, (DESY, Hamburg), M. Krasilnikov, F. Stephan, (DESY, Zeuthen),

“Tunable IR/THz source for pump probe experiments at the European XFEL, Contribution to FEL 2012, Nara, Japan, August 2012

PITZ Highlights:

• Identical pulse train structure as XFEL

• High charge feasibility (up to 6 nC) 

• Advanced photocathode laser shaping

• Initially designed beam for THz FEL

→ 4 nC, 200 A
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Transverse profile 

correction

European XFEL (~3.4 km)
Pump 

& 

Probe

X-ray

THz

PITZ-like accelerator based 

THz source (~30 m)

E.A. Schneidmiller, M.V. Yurkov, (DESY, Hamburg), M. Krasilnikov, F. Stephan, (DESY, Zeuthen),

“Tunable IR/THz source for pump probe experiments at the European XFEL, Contribution to FEL 2012, Nara, Japan, August 2012

Proposal “Conceptual design of a THz source for

pump-probe experiments at the European XFEL

based on a PITZ-like photo injector” has been

supported by the E-XFEL Management Board →

dedicated R&D activities at PITZ → Proof-of-principle

experiments (2019-2023)
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PITZ beamline extension

X.-K. Li          |         M-seminar

Design and technical Implementation

LCLS-I undulator

New Installations (~17m!)

Old beamline (~22m)

Tunnel annex in 2018

THz beamline

Gun 

solenoids

Booster Beam

dumps

RF-Gun

TDS

1.5-m 

concrete wall

Current beamline (~35 m)

LEDA

Chicane bunch compressor

(4 HERA corrector dipoles)

LCLS-I undulator

(on loan from SLAC)

𝑃𝑧 ~17 MeV/c → lrad~100 mm 



Page 5

Current status
Lasing at ~3THz with ~17MeV/c, ~2nC Gaussian beams

X.-K. Li          |         M-seminar

▪ Pulse energy:

▪ > 100mJ generated, 

▪ Energy fluctuations ~6-10%

▪ THz transverse profile

▪ Focused THz pulse

TD1

TD2

TD3 ▪ THz spectrum by FTIR (E. Zapolnova)

▪ Narrow  (1.7%) bandwidth demonstrated

▪ 3rd and 5th harmonics observed

▪ 𝑓 = 2.82 𝑇𝐻𝑧 ( 𝜆𝑟𝑎𝑑 = 106.5 𝜇𝑚 )

Courtesy of N. AftabM. Krasilnikov, et al., Phys. Rev. Accel. Beams., 28(3):030701, 2025



Beam dynamics and 

experimental results
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Beam dynamics overview
Challenge: 2-3 nC 17 MeV/c beam over ~30 m transport and matching into LCLS-I undulator

Optimization of photoinjector
• Transverse and longitudinal phase spaces

• Knobs: Laser distributions, Solenoid fields, 

Booster phase, Steering or beam trajectory

Transport of electron beam
• Focusing while not spoiling beam quality

• Routine and reproducible procedure

Matching of transverse phase space
• At undulator, Chicane, …

• Limited diagnostics + space charge effects

• Matching procedure

<7 MeV

FLASHlab@PITZ

<22 MeV DiagnosticsLow High1 High2 High3

X.-K. Li          |         M-seminar
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Optimization of photoinjector

• Routine emittance optimization

• Beam shaping aperture (BSA) and solenoid scan

X.-K. Li          |         M-seminar

Normalized emittance

Solenoid scan for emittance

optimization (4 nC)

• Up to now, Gaussian photocathode laser was used in 

experiments

• 20 ps flattop laser is now available from NEPAL laser, 

hopefully to improve the beam quality and THz output

BSA: 3-4 mm
Laser FWHM: ~7 ps

(compared to Astra simulations of ~4 mm mrad)
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Optimization of photoinjector

• Measured emittance (phase space) also depends on

• Laser alignment in the gun (laser BBA)

• Gun quadrupoles (quadrupole field from solenoid )

• Beam trajectory in the booster (booster BBA)

X.-K. Li          |         M-seminar

Phase space and trajectory

Xemit = 5.1 um

Yemit = 5.8 um

Xemit = 6.9 um

Yemit = 5.3 um

Booster steering free Symmetric beam downstream

Earth’s magnetic fields → off-axis trajectory → wakefields

EMF=(0,-50,0) µT 

Astra simulation

Courtesy K. Peetermans
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Optimization of photoinjector

• The RF phases in the gun and the booster can be tuned for optimizing the LPS

• Booster phase → control LPS & the peak current → maximize THz output

X.-K. Li          |         M-seminar

Longitudinal phase space (LPS)

After booster Before undulator

Astra simulation

THz Energy vs booster phase

Impact-T/Z and Genesis1.3

Courtesy B. Li
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Transport of electron beam

• There is a long transport beamline (~23 m) from the booster accelerator to the undulator

• The beam size and emittance grow fast due to collective effects if the beam is not well focused

• Space charge changes along the bunch slices, causing them to rotate at different rates in the phase space

• A preferred beam transport requires

• Change of beam size predictable

• Already found lattice reproducible

• A well-established and possibly routine procedure

• If possible, keeping the beam emittance small

X.-K. Li          |         M-seminar
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Transport of electron beam

• The beam is focused equally in horizontal and vertical plane with quadrupole triplet

• Iteratively increase the amplitude of quad currents after degaussing → reproducible magnet setting

• Beam size at two downstream screens monitored alternatly

• This ensure a smooth and symmetric beam transport after the triplet, where the beam size cannot be 

measured everywhere

Method: symmetric beam transport

X.-K. Li          |         M-seminar

Ocelot simulation
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Transport of electron beam

• In total, four quadrupole triplets (QT) are used to focus 

and match the beam from the booster to the undulator

• With the first three triplets, the beam is focused equally 

in both transverse planes

• The beam emittance is also controlled by the quadrupoles

• Note: no beam optics in the 𝜙36 mm pipe in the 1.5 m 

thick concrete wall (𝒛~𝟐𝟔𝐦) between tunnels

X.-K. Li          |         M-seminar

Result

Astra and Ocelot simulation

QT1 QT3 QT3

QT4
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• The LCLS-I undulator vacuum chamber (11 mm x 5 mm, 3.4 m) is very “small” for 17 MeV/c electrons

• Space charge force and strong vertical focusing force (K~3.5) from the undulator fields can lead to a 

rapid growth of the beam size and therefore beam loss, if the transverse phase space is not matched

Matching into LCLS-I undulator

In the horizontal plane, the motion is dominated by 

the space charge; in the vertical plane, it is up to 

the undulator focusing fields

→ Matched phase space is defined by 

independent parameter scan in two planes

X.-K. Li          |         M-seminar Astra simulation

x-px

y-px

Beam transport in LCLS-I undulator
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• Beam envelope development is determined by 

matched Twiss parameters + space charge

• Symmetric beam transport: 

• Start-to-end simulations define the beam envelope at the two stations

• Forward tracking (scanning of first triplet) → Blue curve

• Backward tracking (scanning of second triplet) → Red curve

Matching into LCLS-I undulator
Method

Matching simulation (2 nC)

Matching 

condition

𝜶𝒙, 𝜶𝒚, 𝜷𝒙, 𝜷𝒚
Before undulator

𝝈𝐱𝐲
𝐬𝟏, 𝝈𝐱𝐲

𝒔𝟐

At two screens

High2.Q3-Q5 High3.Q1-Q3
LCLS-I 

undulator

Scr1 Scr2
(𝜶𝒙, 𝜶𝒚, 𝜷𝒙, 𝜷𝒚)

Wall

S2E

𝝈𝐱𝐲
𝐬𝟏 𝝈𝐱𝐲

𝒔𝟐

X.-K. Li          |         M-seminar

x-px

y-px

By Ocelot

X.-K. Li, et al., Proc. IPAC’21, 3244-3247.
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Matching into LCLS-I undulator

• Tuning the first triplet in the experiments is like the forward tracking → Green curve

Result

Matching 

condition

Symmetric beam 

transport

• Lines are from simulation (Astra and Ocelot)

• Markers are from measurements

High2.Q3-Q5 High3.Q1-Q3
LCLS-I 

undulator

Scr1 Scr2
(𝜶𝒙, 𝜶𝒚, 𝜷𝒙, 𝜷𝒚)

Wall

S2E

𝝈𝐱𝐲
𝐬𝟏 𝝈𝐱𝐲

𝒔𝟐

X.-K. Li          |         M-seminar
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Improving radiation output

• We use a Bayesian optimizer (Matlab) to optimize the beam trajectory and phase spaces

• Two pairs of steering coils → trajectory

• Long coils along the undulator → trajectory

• Four to six quadrupole magnets → transverse phase space

• Booster phase → longitudinal phase space

X.-K. Li          |         M-seminar

Bayesian

Optimization

THz pulse

energy



THz FEL simulations
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Shot noise in FEL simulations

• The shot noise, which arises from the stochastic nature of the electrons in a bunch, is one of the most 

critical parameters in the initiation of electron distributions in free-electron lasers (FEL) simulations

• For any distribution of electron bunch or bunch slide, the shot noise can be described by 

𝑒−𝑖𝜃𝑗 =
1

𝑛𝑒
෍

𝑗=1

𝑛𝑒

𝑒−𝑖𝑘𝑧𝑗

where 𝑛𝑒 is number of electrons in the slice.

• For a random distribution, the absolute square of 𝑒−𝑖𝜃𝑗 (known as the form factor) follows the negative 

exponential distribution with an expectation of 𝟏/𝒏𝒆

𝑒−𝑖𝜃𝑗
2
~𝔼 𝑒−𝑖𝜃𝑗

2
,
1

𝑛𝑒

where 𝔼 𝑥, 𝜇 =
1

𝜇
𝑒−𝑥/𝜇, 𝜇 is the expectation value.

• In Genesis1.3, the shot noise is introduced by adding mirror particles to the macro particles 

→ number of macro particles much smaller than number of electrons & random distribution in the slice

X.-K. Li          |         M-seminar S. Reiche, Nucl. Instrum. Methods Phys. Res., Sect. A 429, 243 (1999)
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Impact of local bunching factors

• What if the distribution is not random within the range of the resonant wavelength?

→ Coherent spontaneous radiation: e.g., from rising slope of flattop or Gaussian profiles

• Consider “local” bunching factor: 𝑏𝑠 𝑧𝑠 =
𝑧𝑠−𝜆/2׬
𝑧𝑠+𝜆/2 𝑓 𝑧 𝑒−𝑖𝑘𝑧𝑑𝑧

𝑧𝑠−𝜆/2׬
𝑧𝑠+𝜆/2 𝑓 𝑧 𝑑𝑧

, 𝑧𝑠 is the slice center, 𝑓 𝑧 is the distribution of 

current profile

• For a Gaussian profile, 𝑓 𝑧 =
1

2𝜋𝜎𝑧
𝑒
−

𝑧2

2𝜎𝑧
2
≅ 𝑓 𝑧𝑠 + 𝑧 − 𝑧𝑠 𝑓

′ 𝑧𝑠 , we have

𝑏𝑠 𝑧𝑠 ≅
𝑧𝑠
𝑘𝜎𝑧

2 sin 𝑘𝑧𝑠 − 𝑖cos 𝑘𝑧𝑠

𝑏𝑠 𝑧𝑠 =
𝑧𝑠
𝑘𝜎𝑧

2

𝜙𝑠 𝑧𝑠 = tan−1 cot kzs

X.-K. Li          |         M-seminar

As found from the standard output of Genesis1.3 

B. McNeil, et al., Optics Communications 165, 65 (1999).
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Impact of local bunching factors

• The radiation from one slice consists of the spontaneous radiation (∝ 𝑛𝑒) and the coherent part (∝ 𝑛𝑒
2 𝑏𝑠

2), 

their ratio is 𝑛𝑒 𝑏𝑠
2

→ 𝑛𝑒 𝑏𝑠
2 is peaked at 𝑧𝑠 = ± 2𝜎𝑧

→ 𝑛𝑒 𝑏𝑠
2 < 1, spontaneous emission dominates

→ 𝑛𝑒 𝑏𝑠
2 > 1, coherent emission dominates

• 𝑛𝑒 𝑏𝑠
2 > 1 ⇒ 𝒌𝟑𝝈𝒛

𝟑 <
𝑄

𝑞𝑒
8𝜋

1

2𝑒−1
1 nC

𝒌𝝈𝒛 < 𝟐𝟐𝟓𝟖

• Short-wavelength FEL (1 nC, 1 kA, 1 nm)

→ 𝑘𝜎𝑧~10
5, 𝑛𝑒 𝑏𝑠

2~10−8

• THz FEL (1 nC, 100 A, 3 THz)

→ 𝑘𝜎𝑧 = 75, 𝑛𝑒 𝑏𝑠
2 = 27000

X.-K. Li          |         M-seminar

1 nC
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Initialization of beam for Genesis1.3

• For each slice, generate samples of random 

distribution, 𝑥𝑗~𝑈 0,1 , and apply shot noise [1]

• Convert the random distribution to the actual distribution

e.g, for Gaussian distribution, 

𝑧𝑗 → F−1 𝑟𝑗 = 𝜇 + 𝜎 2erf−1 2𝑟𝑗 − 1

where 𝐹−1 is the inverse CDF function, 𝜇 and 𝜎 are 

mean and standard deviation of the Gaussian distribution

• The local bunching amplitude can be orders of magnitude 

higher; the bunching phase is also stable

X.-K. Li          |         M-seminar

[1] C. Penman and B. McNeil, Optics Communications 90, 82 (1992)
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Initialization of beam for Genesis1.3

• For any particle distribution obtained from start-to-end 

simulation, we smooth the current profile and 

calculate the CDF numerically

X.-K. Li          |         M-seminar

𝟏/𝒏𝒆
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One slice

Benchmark simulation

• Electron beam: 17 MeV/c (𝜆𝑠 = 100 μm), 1 pC, 0.3 A

• One4one = False, quiet loading, Nm = 26*32768 = 851,968

• One4one = True, Ne = 6,241,509

• One4one = False, smoothed profile, Nm = 26*32768 = 851,968

X.-K. Li          |         M-seminar

Current profile in Genesis4 Initial bunching in Genesis4 Gain curves from Genesis4
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Using input from start-to-end simulation

• Electron beam: 17 MeV/c (𝜆𝑠 = 100 μm), 2 nC, 112 A

• One4one = False, smoothed profile, Nm = 85*32768

• One4one = False, quiet loading, Nm = 85*32768

X.-K. Li          |         M-seminar

Quiet 

loading

Actual

profile

Undulator

exit, 3.4 m

Gain curves Temporal profiles Spectrum

@3.4 m

@5.2 m

@3.4 m

@5.2 m
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Using input from start-to-end simulation

X.-K. Li          |         M-seminar M. Krasilnikov, et al., Phys. Rev. Accel. Beams., 28(3):030701, 2025

Slice energy: before vs after

Current

profile

Energy loss 

weighted by 

current

THz pulse

Electron beam

THz spectrum
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Two 
orders

Comparison with experimental data

X.-K. Li          |         M-seminar

• The measured pulse energy was about 40-50 μJ for 2 nC; considering transmission loss of 50%, about 100 

μJ has been generated

• From simulations, we got 300-500 μJ with the actual profile (but only several μJ with quiet loading)

Possible reasons: beam trajectory (due to undulator transverse gradient + EMF), wakefields (geometric and resistive wall), 

waveguide effect, etc

Actual profile

@1.2m

Quiet loading

@1.2m

Measured with FTIR (E. Zapolnova)

• Spectrum from measurement 

and simulations
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• The measured pulse energy was about 40-50 μJ for 2 nC; considering transmission loss of 50%, about 100 

μJ has been generated

• From simulations, we got 300-500 μJ with the actual profile (but only several μJ with quiet loading)
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Actual profile
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Measured with FTIR (E. Zapolnova)

• Spectrum from measurement 

and simulations
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Summary

• The THz FEL at PITZ: first lasing in 2022, currently generating >100 μJ single pulse energy at 3 THz

Routine tuning: Beam transport and matching + Bayesian optimization of last magnets

• The THz FEL starts from coherent spontaneous radiation,

which comes from the rising slope of the electron beam

current profile 

→ lower requirement on peak current + better stability

• R&D on THz FEL continues at PITZ:

1) Developing or testing THz diagnostic techniques, e.g., EOS

2) Understanding and modeling of THz FEL and

3) Improving performance by laser shaping, bunch compression, seeding, etc

X.-K. Li          |         M-seminar

Min user 

requirements

Expected from optimized setup 

Experimentally at PITZ
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THz@PITZ Team and Collaboration
Proof-of-principle experiment on high power THz source

DESY Hamburg

• E. Schneidmiller

• M. Yurkov

• B. Krause 

• M. Tischer

• P. Vagin

Uni Hamburg

• J. Rossbach

• W. Hillert

DESY Zeuthen

SLAC

• A. Brachmann

• N. Holtkamp

• H.-D. Nuhn

Engineers and Technicians:

• R. General

• L. Heuchling

• M. Homann

• L. Jachmann, 

• D. Kalantaryan

• W. Köhler

• G. Koss

• S. Maschmann

• D. Melkumyan

• F. Müller

• R. Netzel

• B. Petrosyan

• S. Philipp

• M. Pohl

• C. Rüger

• A. Sandmann-Lemm

• M. Schade

• E. Schmal

• J. Schultze

• S. Weisse

Physicists:

• Z. Aboulbanine*

• G. Adhikari*

• N. Aftab

• P. Boonpornprasert*

• G. Georgiev*

• J. Good

• M. Gross

• A. Hoffmann

• E. Kongmon*

• M. Krasilnikov

• B. Li

• X.-K. Li

• A. Lueangaramwong*

• R. Niemczyk*

• A. Oppelt

• H. Qian*

• C. Richard

• F. Stephan

• G. Vashchenko

• T. Weilbach*

• D. Xu

• X. Zhang*

* → left PITZ for other lab

X.-K. Li          |         M-seminar

Special thanks to CANDLE colleagues participated 

in THz commissioning and lasing shifts!



Backup

X.-K. Li          |         M-seminar
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THz diagnostics
Overview

CTR/TD1:

• Quartz vacuum window

• ~0.2 m transport in vacuum, ~0.5 

m transport in air

• Focusing by using 90° off-axis 

ellipsoidal and parabolic mirrors

• Pulse energy  pyroelectric 

detector

• THz spectrum  Michelson 

interferometer

TD2:

• ~0.5 m transport in vacuum, ~0.5 m 

transport in air

• Diamond vacuum window

• Focusing by using 90° off-axis 

ellipsoidal mirror

• Pulse energy  pyroelectric 

detector

• Single-shot EOS?

Available;  Planned/ongoing (short term);   Wished (long term)

X.-K. Li          |         M-seminar

TD3:

• ~1.5 m transport in vacuum, 

1-1.5 m transport in air

• Diamond vacuum window

• Focusing by using 90° off-axis 

ellipsoidal and parabolic mirrors

• Pulse energy  pyroelectric 

detectors

• Trans. profile  THz camera

• Polarization  THz polarizer 

• THz spectrum  Michelson 

interferometer

• Single-shot EOS?

MIR

Current TD3 layout

Movable 

THzCam

Path of light

MIR
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Spectrum measurements
Measured with the FTIR spectrometer from FLASH (E. Zapolnova, THz beamline at FLASH, waiv.ai)

X.-K. Li          |         M-seminar

• 2 nC beam, central frequency ~2.82 THz (𝜆rad = 106.5 μm), reference signal from PITZ pyro

• Narrow bandwidth

• High harmonics (3rd and signature of 5th)

• Spectrum shape in linear regime

vs GENESYS1.3 

simulations
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Optimization of photoinjector

• Routine procedures before emittance optimization

• Laser BBA: Align the beam with the RF field axis in the gun: 𝛥𝑟 = 0
Idea: RF field is rotationally symmetric, RF kick ~ Δ𝑟 ⋅ Δ𝜙
Issue: Earth magnetic field (EMF) → (-0.3, -0.1) um instead of (0, 0) at the center

Beam based alignment (BBA)

M. Krasilnikov, PPS talk, 2022-03-31

X.-K. Li          |         M-seminar
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Optimization of photoinjector

• Routine procedures before emittance optimization

• Booster BBA: Align the beam with the RF field axis in the booster; also not 

perfect due to the existence of EMF

→ The beam is offset by ~3 mm with an angle ~1 mrad after booster

→ Prediction & correction with the data from simulations, seems to work

• Ultimate solution to EMF: Helmholtz coil?

• Other procedures

• Solenoid BBA, usually done after installation

• Gun quads optimizer → compensate the asymmetric distribution of laser 

and/or the quadrupole component of the solenoid fields; currently done with 

Simplex method

Beam based alignment (BBA)

EMF=(0,-50,0) µT 

From K. Peetermans, DESY summer school 2022 report 

X.-K. Li          |         M-seminar
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Why trajectory matters?

X.-K. Li          |         M-seminar

e- beam at High3.Scr1 

(in front of the undulator) 

changed with upstream 

steerers

Guess: dispersion effects?

Solution: Minimize the use of 

steerers and make quadrupoles 

steering free
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Quad steering free beam transport

• Idea

• Response matrices with and without quads are different

• When all quads are made steering free 

→ trajectories with and without quads will be same

• By measuring the difference, the trajectory inside the quads 

can be set to beam axis by tuning steerers with

• Limits

• Low steerers may need to be tuned in order to make High1 

quads steering free (otherwise currents out of limit)

• No enough steerers to make all relevant quads (especially 

High2.Q3-Q5) steering free

X.-K. Li          |         M-seminar

𝜟𝜽 = − 𝑯𝟏 −𝑯𝟎
−𝟏(𝒙𝟏 − 𝒙𝟎)

where 𝐻0 and 𝐻1 are response matrices w/o and w/ quads, 

𝑥0 and 𝑥1 are beam positions measured w/o and with the quads

Simulations by D. Dmytriiev
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• The LCLS-I undulator vacuum chamber is very “small” for 17 MeV/c electrons

• Space charge force and magnetic focusing force from the undulator fields can lead to a rapid growth of the 

beam size and therefore beam loss, if the transverse phase space is not well matched

Matching of transverse phase space
For LCLS-I undulator

In the horizontal plane, the motion is dominated by the 

space charge; in the vertical plane, it is up to the 

undulator focusing fields

→ Independent parameter scan in two planes

X.-K. Li          |         M-seminar
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• For the momentum of 17 MeV/c and normalized emittance of 4 um 

Scan of transverse phase space for matching
In horizontal plane

𝐹 = |𝜎𝑥
𝑖𝑛 − 𝜎𝑥

𝑜𝑢𝑡|

stable

X.-K. Li          |         M-seminar

Astra simulations

−
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Scan of transverse phase space for matching

• For the momentum of 17 MeV/c and normalized emittance of 4 um 

X.-K. Li          |         M-seminar

In vertical plane

𝐹 = 𝜎𝑦 0→𝐿𝑢𝑛𝑑

stable

Astra simulations

−
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Scan of transverse phase space for matching
Beam emittance scan

• Here the beam size and covariance are fixed and the x and y emittances are scanned

• The beam envelopes in the undulator are not affected much

Phase space matching (6 parameters) → beam size and covariance (4)

X.-K. Li          |         M-seminar

Astra simulations

For x For y


