Machine learning-based construction of LPS simulator at EuXFEL

Zihan Zhu, Sergey Tomin, Jan Kaiser

Shanghai Institute of Applied Physics, Chinese Academy of Sciences

Deutsches Elektronen-Synchrotron DESY, MXL

2022/12/06

Beam longitudinal phase space acquisition

Beam dynamics simulations with OCELOT

Track the beam from gun cavity to the collimator section

Collective effects (CSR, wakefields, space charge) involved

Tuning knobs: RF settings upstream the compressors

RF parameters	Min_Value	Max_Value
I1_chirp	-9.3	-8.3
I1_curvanture	120	190
l1_skewness	22000	28000
L1_chirp	-10.9	-9.4
L2_chirp	-12.7	-8.5

Prediction of LPS distribution based on Image

Prediction of LPS distribution based on Image

Beam slice parameters can be evaluated based on the reconstructed LPS

Detail in the 2D distribution can be predicted

Prediction of LPS distribution based on slice beam parameters

- Energy distribution (slice mean energy and slice energy spread)
 - Longitudinal position distribution (current profile)

Prediction of LPS distribution based on slice beam parameters

Information lost during LPS distribution reconstruction

Machine learning-based construction of LPS simulator at European XFEL

Comparison of the two approaches

Properties	Image-based	Slice-based
Structural complexity	High	Low
Computational expense	High	Low
Training duration	8 hours	5 minutes
microstructure accuracy in 2D distribution	High	Low
Slice beam distribution accuracy	Low	High

LPS estimator GUI development

German Academic Exchange Service

Summary

Achievements

- Demonstrate the accuracy and feasibility of neural networks for surrogate model construction
- Two approaches have been developed to provide LPS prediction
- GUI is developed for interacting with the model

Outlook

- Further applications: beam dynamics optimizaiton, new beam configuration design, etc
- More functions to be integrated: data generator, training model, physical simulation, etc
- Model performance test in the BKR

11