Beam dynamics related topics of the ASPECT project

AttoSecond Pulses with eSASE and Chirp/Taper

Jiawei Yan on behalf of the ASPECT team

Science Case

- X-ray imaging with attosecond pulses
- Charge migration in molecules after core ionization
- Direct multiphoton ionization

Science case by Daniel Rivas, Simon Dold, Tammaso Mazza, Michael Meyer A. Picón et al., PRA 98, 043433 (2018)

RESEARCH

RESEARCH ARTICLE

ATTOSECOND SCIENCE

Attosecond coherent electron motion in Auger-Meitner decay

Siqi Li^{1,2}⁺, Taran Driver^{1,3,4}⁺, Philipp Rosenberger^{1,3,5,6}, Elio G. Champenois³, Joseph Duris¹, Andre Al-Haddad⁷, Vitali Averbukh⁴, Jonathan C. T. Barnard⁴, Nora Berrah⁸, Christoph Bostedt^{7,9},

Path to short pulse production at the European XFEL

Coherence time

Radiation overtakes electron of one wavelength every undulator period

$$L_{g,\text{power}} = \frac{\lambda_u}{4\pi\sqrt{3}\rho} \qquad \rho = \frac{\lambda_u}{4\pi} \left[\frac{4\pi^2}{\gamma_1^3} \frac{en_0}{I_A} \frac{K^2}{\lambda_u} \frac{A_{\text{JJ}}^2}{2} \right]^{1/3}$$

Overtaking length in $L_{\text{g}} \frac{L_{g,\text{power}}}{\lambda_u} \lambda_1 = \frac{\lambda_1}{4\pi\sqrt{3}\rho} = L_{coh}$

SASE FEL pulses usually much longer than coherence length \rightarrow spikes in the time domain intensity profile (many independent modes)

Decreasing the lasing window implies a shorter Xray pulse, same power level, less energy up to σ_z

$$\frac{\rho\omega\sigma_z}{c}\sim 1$$

HXR ~ fraction of fs SXR ~ few fs level

Beyond the coherence time especially important for SXR

- Shorter X-ray pulses are easier at harder X-rays wavelengths!
- Need enhanced control and manipulation of the electron beam longitudinal phase space
- At European XFEL: we want short pulses both at HXR and SXR
- Two inter-related techniques:
 - Chirp/taper
 - eSASE
- Based on
 - Modulating the electron beam energy within a few tens of MeV at optical wavelength
 - Selecting short lasing window
 - Inverse taper
 - Transform energy modulation into density modulation and inverse taper
 - When needed (SXR): shorten the slippage (short radiator, wakes and increased current)

SASE process disruption with chirped beams

- Control of the lasing window can be achieved by energy chirp
- In fact lasing needs resonance along a gain length, i.e. within a coherence time
- When a linear energy chirp is imposed on an electron bunch, such that the relative energy deviation on the scale of a coherence time is larger than the FEL bandwidth, the FEL process is effectively disrupted $\hat{\alpha} = -\frac{d\gamma}{dt}\frac{1}{\gamma\omega\rho^2}$ with modulus > 1
- But this effect can be roughly compensated by a taper $\frac{dK}{dz} = -\frac{(1+K^2/2)^2}{K} \frac{1}{v^3} \frac{d\gamma}{c dt}$

Chirped electron beams by means of energy modulation

 Modulate the electron beam in energy e.g. by means of interaction with a few-cycle, high energy optical laser

- Energy modulation induced on a 14 GeV bunch interacting in a two-period wiggler (70cm period) with a 800 nm/1030 nm pulse laser with 3mJ and 5fs FWHM duration, following [Zholents].
- It amounts to a sequence of positive and negative chirps
- Important parameters are:
 - magnitude of the gradient
 - ratio of gradients between peaks
- They must be large enough to avoid lasing everywhere except (upon taper correction) in the red part
- Carrier-envelope phase is clearly important as well (see later)

Chirp/Taper Scheme

- Modulate the electron beam with external laser
- Reverse Taper to follow the energy chirp

HXR > 5keV

Down to the coherence time, fraction of fs, larger than it. Limited by the lasing window.

SXR<5keV

- Issue, coherence time becomes longer than the lasing window, limited by the coherence time:
- Suppress BKG by excessive reverse taper to bunch the beam

Use a short radiator

E. Saldin, et al. Self-amplified spontaneous emission FEL with energy-chirped electron beam and its application for generation of attosecond x-ray pulses. Doi: https://doi.org/10.1103/PhysRevSTAB.9.050702

Jiawei Yan. 07.06.22

Possible realization at EuXFEL (Hard X-rays)

9

Simulations

Example at 800 nm, 3 mJ, 4fs

ESY.

Jiawei Yan. 07.06.22

European XFEL

13

CEP Stability

14 GeV, 6 keV 1030 nm, <mark>4 mJ, 4fs</mark>

CEP stability requirements ultimately depend on the experiment (what contrast can be tolerated)

Here we see that +/- 0.2π rad peak to peak keeps the contrast high for all pulses

A reasonable requirement is then 400 mrad rms (max: 600 mrad rms)

Jiawei Yan. 07.06.22

Summary of Laser Parameters

Wavelengths 512 nm – Lower peak power (2GW) 800 nm - Good 1030 nm - Good

Electron energy 11.5 and 14 GeV

Pulse ratio 0.74 0.72 0.70 4.0 2.5 3.0 3.5 4.5 5.0 2.0 Pulse energy (mJ) 0.300 800 nm,4 fs 512 nm 800 nm, 5 fs Laser Power 0.275 (fs) 1030 nm, 4 fs ϕ =0.00 pi: integrated over 6.00-8.01 fs 4 – 5 fs and 2 – 5 mJ^{1.0} 0.250 Eattopulse/Etotal; Pulse duration FWHM duration [fs] 0.225 0.8 **CEP** Stability 0.200 0.6 400 mrad rms 0.175 0.4 (max 600 mrad rms) 0.150 0.2 0.125 0.0 25 75 100 125 150 50 0.100 0 2.5 3.0 4.5 5.0 2.0 3.5 4.0

z [m]

0.86

0.84

0.82

0.80

0.78

0.76

Jiawei Yan. 07.06.2

800 nm, 4 fs

800 nm.5 fs

1030 nm, 4 fs

Pulse energy (mJ)

5.5

5.5

Jiawei Yan. 07.06.22

Possible realization at EuXFEL (Soft X-rays)

16

Jiawei Yan. 07.06.22

SXR simulations

Stage1 10 cell reverse taper

AW= 6.1727; +0.0185 per cell

European XFEL

- 1030 nm, 4 fs, 5 mJ
- 14 GeV, 2500 A, beta = 32 m, emittance= 0.5 mm mrad

SASE3 Short final radiator 0.5 0.4 0.3 0.2 0.1 0.0 6 -6 2 t (fs)

SXR simulations

Stage2 1 cell

Jiawei Yan. 07.06.22

SXR simulations

0.8 Contrast 0.4 6.40 power (GW) 6

Jiawei Yan. 07.06.22

Contrast: ~ 85.23% Pulse duration (FWHM): ~ 516 as

SXR simulations

Stage2 1 cell

Jiawei Yan. 07.06.22

CEP Stability

14 GeV, 700 eV 1030 nm, <mark>5 mJ, 4fs</mark>

Jiawei Yan. 07.06.22

eSASE scheme at the LCLS

- Spike at the back of the bunch after compression
- Allows for self-modulation
- A chicane transforms the energy into a density modulation
- Creation of isolated high current peak
- Allows for
 - few-hundred as
 - GW peak power

J. Duris, et al. doi: <u>10.1038/s41566-019-0549-5</u>

Summary

We are currently investigating a chirp/taper and eSASE scheme for EuXFEL (ASPECT)

Chirp/Taper simulations for both hard and soft x-rays are being performed Simulated pulse durations of 200 as for HXR and 400 as for SXR

- eSASE simulations come next
- Explore other regimes
- ► AppleX (polarization)
- ► Two pulses
- Chicane & third stage (superradiance)

Investigation of space charge as a modulation source

We plan to finish CDR this summer

We plan to install major hardware in the long maintenance shutdown 25

