Transverse phase space studies of XFEL 250 pC beam vs laser shaping

H. Qian, M. Gross, R. Niemczyk, M. Krasilnikov 1.06.2021

Outline

- Motivation
- Transverse phase space
- Analysis of simulations
- Analysis of experiments
- Summary

Motivation

How to compare emittance values between XFEL injector and PITZ

- 250 pC emittance statistics
 - PITZ: ~0.47-0.8 mm.mrad
 - Slit scan \rightarrow 2D phase space distribution \rightarrow emittance
 - XFEL: ~0.35 0.8 mm.mrad
 - Phase advance scan \rightarrow <xx>, <xx'>, <x'x'> (if no tomography)
 - Emittance depends on beam size calculation (rms or Gaussian fitting)
 - How to compare the two?

 $\min(\sqrt{\beta_{\rm X}} \cdot \beta_{\rm y})$ [m]

6

LCLS injector with Gaussian truncation optimization

LCLS-I injector example

- 2012, LCLS experience: (PRST AB 15, 090701)
 - 150 pC, ~1.3 ps (rms) laser
 - Uniform \rightarrow 1.1- σ Gaussian truncation

Simulated slice emittance

Phase space description

Position and angle coordinates

- Transverse phase space by trajectory perspective
 - position and angle, x and x'

• RMS emittance,
$$\varepsilon_{rms} = \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle x * x' \rangle^2}$$

• Twiss parameters,
$$\beta = \frac{\langle x^2 \rangle}{\varepsilon}$$
, $\gamma = \frac{\langle x'^2 \rangle}{\varepsilon}$, $\alpha = -\frac{\langle x * x' \rangle}{\varepsilon}$

• RMS emittance ellipse,
$$\varepsilon_{rms} = \gamma x^2 + 2\alpha x x' + \beta {x'}^2$$

- Pro: easy to describe beam in real space
- Con: not a good way to describe beam quality in phase space, i.e. phase space density (2D)
 - If the 95% phase space distribution is the same, but outside 5% particles become very bad, then ε_{rms} becomes very bad, just like the rms size calculation of 1D distribution.

DESY.

Action and phase analysis of phase space

Another method to analyze phase space data

- Get to know this idea during an interview
 - Method is published, the author is also employed by our group
 - <u>C. Richard</u>, J.P. Carneiro, L.R. Prost, A.V. Shemyakin, Analysis of Allison Scanner Phase Portraits Using Action-Phase Coordinates", in Proc. NAPAC'19, Lansing, MI, USA, Sep. 2019, paper TUPLS08.
 - <u>C. Richard</u>, M. Alvarez, J.P. Carneiro, B. Hanna, L.R. Prost, A. Saini, V. Scarpine, A.V. Shemyakin, Measurements of a 2.1 MeV H⁻ Beams with an Allison Scanner", Review of Scientic Instruments, 2020

Phase space transformation

Action and phase coordinates

- Transform into new coordinates
 - Action (ellipse area/2pi)

•
$$J_i = \frac{1}{2} \left(\gamma x_i^2 + 2\alpha x_i x_i' + \beta x_i'^2 \right)$$

•
$$\varepsilon_{rms} = \frac{1}{N} \sum_i J_i$$

• Phase

•
$$J_i = \frac{1}{2\beta} \left(x_i^2 + (\alpha x_i + \beta x_i')^2 \right)$$

•
$$\phi_i = \tan^{-1} \frac{\alpha x_i + \beta x'_i}{x_i}$$

- Pro: project particles to the J axis, i.e. dQ/J, better describes phase space density.
- Con: cannot describe beam motion in real space

Phase space transformation

Action and phase coordinates

- Core emittance analysis
 - Assume the phase space core is a good approximation of Gaussian distribution

•
$$dQ = \frac{Q}{2\pi\varepsilon_0} \exp\left(-\frac{\gamma x_i^2 + 2\alpha x_i x_i' + \beta x_i'^2}{2\varepsilon_0}\right) dx dx'$$

 $= \frac{Q}{\varepsilon_0} \exp\left(-\frac{J}{\varepsilon_0}\right) dJ$

- Fit exponential density decay \rightarrow core emittance ε_0
 - Non Gaussian 'halo particles' does not matter anymore in calculating core emittance
 - Similar to XFEL emittance calculation by using Gaussian fitted beam size

Phase space renormalization

•
$$\varepsilon_i = \gamma x_i^2 + 2\alpha x_i x_i' + \beta x_i'^2$$

•
$$\frac{\varepsilon_i}{\varepsilon_0} = \left(\frac{x}{\sqrt{\varepsilon_0\beta}}\right)^2 + \left(\frac{\alpha x_i + \beta x_i'}{\sqrt{\varepsilon_0\beta}}\right)^2$$

250 pC simulations with the PITZ beamline vs laser shaping

250 pC simulation vs laser shapes

gun 6.3 MeV/c, booster exit ~19.5 MeV/c

- Thermal emittance setting: 1 mm.mrad/mm (measurements)
- Laser rms size 0.25 mm
 - Gaussian: 6 ps FWHM (close to MBI laser values)
 - Flattop/Parabolic/Ellipsodial, final peak current ~20 A
 - Tune duration to get same emission peak current
- Projected emittance
 - 6-20% reduction on 100% emittance
 - 10-16% reduction on <u>95% emittance</u>
 - Negligible difference (+/-3%) on core emittance

		Spatial uniform			Spatial 1o truncation		
		100%	95%	Core	100%	95%	Core
	Gaussian	0.70	0.40	0.29	0.66	0.36	0.32
	Flattop	0.60	0.39	0.29	0.53	0.33	0.31
	Parabolic	0.53	0.37	0.28	0.42	0.31	0.31
DESY.	Ellipsoidal	0.40	0.30	0.30	0.40	0.30	0.30

250 pC simulation vs laser shapes

gun 6.3 MeV/c, booster exit ~19.5 MeV/c

- Thermal emittance setting: 1 mm.mrad/mm (measurements)
- Laser rms size 0.25 mm
 - Gaussian: 6 ps FWHM (close to MBI laser values)
 - Flattop/Parabolic/Ellipsodial, final peak current ~20 A
 - Tune duration to get same emission peak current
- Central slice emittance
 - 42% reduction on 100% emittance
 - 33% reduction on <u>95% emittance</u>
 - Negligible difference (+/-3%) on core emittance

		Spatial uniform			Spatial 1o truncation		
		100%	95%	Core	100%	95%	Core
	Gaussian	0.53	0.38	0.26	0.30	0.25	0.27
	Flattop	0.56	0.39	0.26	0.32	0.26	0.28
	Parabolic	0.56	0.40	0.25	0.33	0.26	0.27
DESY	Ellipsoidal	0.34	0.28	0.29	0.34	0.28	0.29

250 pC vs laser shaping

Projected phase space

- Four laser shapes
 - Gaussian 6 ps FWHM, trans. Uniform
 - Gaussian 6 ps FWHM, trans. 1sigma truncation
 - Flattop 7 ps FWHM, 2 ps rising edge, trans. Uniform
 - Flattop 10 ps FWHM, 2 ps rising edge, trans. Uniform
- Core emittance is ~0.3 mm.mrad
 - 9 sigma phase space area → action J =1.3 mm.mrad
 - Phase space density <u>no difference</u> within 9 sigma phase space

250 pC vs laser spatial shaping

Central slice emittance

Core emittance ~0.27 mm.mrad, 9 sigma phase space action J =1.2 mm.mrad

Spatial 1-sigma truncation

Spatial uniform

250 pC experiment

Preparation of Truncated Gaussian Laser Pulses

Zoom telescope and beam shaping aperture

- Zoom telescope: laser transverse size on beam shaping aperture (BSA) is adjusted to achieve truncation to varying degrees
- Advantage: Varying truncation can be studies for fixed BSA size; quickly adjustable

Range of Truncated Gaussians in this Study

Transverse laser distribution recorded with virtual cathode camera

DESY.

250 pC (Uniform)

MBI ~7 ps FWHM, BSA1mm, 6.3 MeV/c 20210316N

	simu	exp	errbar
95% emit	0.40	0.46	0.01
90% emit	0.29	0.34	/
Core	0.29	0.36	0.005
Peak density	3.00	2.4	0.1
Core ratio	86%	86%	/

Phase space normalized by core emittance

0.9

0.8

0.7

0.6 0.5 0.4

0.3

0.2

0.1

1.1

0.9

0.8

0.7 0.0 Integration 6.0

0.4

0.3

0.2

0.1

5

250 pC (1 σ truncation)

MBI ~7 ps FWHM, BSA1mm, 6.3 MeV/c 20191218A

core emit: 0.358

	simu	exp	errbar
95% emit	0.36	0.38	0.004
90% emit	0.28	0.31	/
Core	0.31	0.37	0.01
Peak density	3.0	2.51	0.10
Core ratio	91%	93%	/

1.1

Peak density: 2.67, Core emittance: 0.369

10⁰

Comparison between 250 pC to 500 pC

experiment data, Gaussian 6-7 ps laser, 6.3 MeV/c

250 pC slice emittance measurements •

250 pC (BSA1)

'Uniform'

80% 2019

0.52

0.39

2.4

93%

Truncation

60% 2019

0.38

0.37

2.5

93%

50 um slit

'Uniform'

80% 2021

0.64

0.51

1.7

86%

10 um slit

250 pC vs 500 pC measurements ٠

'Uniform'

80% 2021

0.46

0.36

2.4

86%

10 um slit

~95% emit

Core

Peak density

Core charge

DESY.

500 pC laser truncation measurements

due to better beam, or 10 um slit effect.

- Action and phase analysis is applied to PITZ data for core emittance, which is comparable with XFEL injector emittance values based on Gaussian beam fitting.
- <u>Simulations</u> show <u>95-100% emittance</u> can be reduced by laser spatial shaping (<u>up to 30-40%</u>), but <u>core</u> <u>emittance is not sensitive</u> to laser shaping, laser shaping optimizes <u>non-Gaussian tails (5-15% charge)</u> in phase space.
- Experiments show 95-100% emittance of <u>250 pC</u> is optimized with <u>60% truncation</u> laser, <u>500 pC</u> is optimized with <u>20% truncation</u> laser.
 - 100-95% emittances do show large reduction for both projected and slice emittance (up to 35%).
 - Projected core emittance is not sensitive to laser shaping, as expected by simulations.
 - Slice core emittance does show a ~16% reduction due to laser spatial shaping, but projected core emittances are very close → Slice emittance measurements are not as often as projected emittance, not sure it's real or just coincidence.
 - Best proj. core emittance for 250 pC and 500 pC from 2021
 - 250 pC: ~<u>0.36 mm.mrad (ideal simulations ~</u>0.3 mm.mrad)
- ~20% higher.
- 500 pC: ~<u>0.51 mm.mrad (ideal simulations ~0.4 mm.mrad</u>)