Beam Dynamics Talk 30th March, 2021

Outline

Introduction

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

Carabiliti

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Backup slides

Semi-analytical Analysis of Single-pass Microbunching Instability in presence of Intrabeam Scattering Effect

Cheng-Ying Tsai¹ Weilun Qin²

¹Huazhong University of Science and Technology

²Deutsches Elektronen-Synchrotron DESY

¹Email: jcytsai@hust.edu.cn.

²Email: weilun.qin@desy.de.

Outline

- Introduction
- Motivation
- Theoretical formulation
 - Model assumptions
 - Oth- and 1st-order dynamics
- Semi-analytical Vlasov-Fokker-Planck (VFP) solver
 - Tool capabilities
 - Possible extensions
- Examples
 - 1. Mid-energy recirculation-IBS ring
 - 2. FODO-BC-FODO-BC transport line
- Summary and Discussion

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Example

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Backup slides

・ロト・西ト・西ト・西ト・日・ シック

Introduction: Micro-Bunching

Microbunching involves phase space modulation and/or pure optics transport and/or high-frequency impedances

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

IBS basics

Motivations

Theoretical formulation Model assumptions Linear integral equations

VFP solver

GUI

Examples Ex1: RIBS ring

Summary

Intrabeam scattering (IBS)

Classic models

- 1. Theoretical models: A. Piwinski, J.D. Bjorken, S.K. Mtingwa (2018 Wilson Prize), M. Martini, K. Bane, CIMP, etc
- 2. Numerical simulation: direct solution of Fokker-Planck equation, Monte Carlo method, etc

Physical processes

- small-angle, multiple particle-particle scattering (different from space charge and Touschek scattering)
- diffusion in particle momentum
- friction in particle momentum
- growth of energy spread and beam emittances

★ Our analysis employs CIMP (Completely Integrable Modified Piwinski) formula to evaluate IBS effects.

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivations

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Backup slides

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Intrabeam scattering (IBS)

According to Piwinski, calculation of IBS growth rate involves

- 1. Lorentz transformation from Lab frame to beam rest frame
- 2. Calculate momentum change due to elastic Coulomb scattering
- 3. Lorentz transformation back to Lab frame
- 4. Change of longitudinal momentum $\stackrel{R_{16,36}}{\Rightarrow}$ change of transverse coordinates $\Rightarrow \Delta \epsilon_{\perp}^{\text{IBS}}$ (similar to $\Delta \delta^{\text{IBS}}$)
- 5. Apply cross section formula, average over the scattering angle
- 6. Average over position and momentum coordinates
- 7. Obtain IBS growth rates

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivations

Theoretical formulation Model assumptions Linear integral equations

/FP solve

GUI Capabilitie

Example

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Motivation

Recent experiment at FERMI linac³ indicates that IBS may have significant effect on FEL performance in terms of incoherent energy spread

★ Physical mechanism: Both MBI and IBS heat the beam, with different mechanisms, but are not fully independent. Existing MBI theory does not properly take IBS into account.

³S. DiMitri et al., New J. Phys. **22**, 083053 (2020)

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

Motivations

heoretical formulation Model assumptions Linear integral equations

VFP solver

GUI

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Motivations

Microbunching has been one of the research focuses in accelerator physics and is expected to remain so in the years to come, as evidenced by the advent of free-electron lasers (FELs). Pros and cons for particle tracking simulation vs. kinetic analysis:

- Particle tracking: time domain, can be sensitive to numerical noise => time-consuming (huge number of macroparticles, sufficient number of bins), easy to implement different physical effects⁴, many available simulation packages
- ► Kinetic analysis: frequency domain, direct solution of microbunched phase space can be avoided ⇒ efficient and free from numerical noise, suitable for systematic studies and/or design optimization, not always straightforward to add various physical effects⁵, simulation packages usually not avaiable

 \bigstar Goal: Develop an efficient, accurate semi-analytical analysis to clarify the interplay between MBI and IBS.

Beam Dynamics Talk 30th March, 2021

Outline

Introduction IBS basics

Motivations

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI Capabilitie

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

⁴For example, nonlinear single-particle effect. But, there can be one exception: it is difficult and time-consuming to simulate CSR and LSC relevant beam dynamics in particle tracking simulations.

⁵There can be one exception: it is straightforward to add CSR and LSC to the analysis. $4 \equiv 4 \equiv 4 \equiv 4$

A caveat

Better to perform 6-D start-to-end calculation for accurate analysis. Either lower-dimensional or concatenated analysis would likely underestimate MB^{6} .

⁶C.-Y. Tsai, NIMA 940, 462-474 (2019), beamline lattice from S. DiMitri, PRST-AB 17, 074401 (2014).

Beam Dynamics Talk 30th March, 2021

Motivations

Kinetic analysis: Vlasov-Fokker-Planck equation

$$\frac{\mathrm{d}f}{\mathrm{d}s} = -\sum_{i=x,y,z} \frac{\partial}{\partial p_i} \left(D_i f \right) + \frac{1}{2} \sum_{i,j=x,y,z} \frac{\partial^2}{\partial p_i \partial p_j} \left(D_{ij} f \right)$$

If the friction D_i and diffusion D_{ij} can be neglected, VFP equation reduces to Vlasov equation (or collisionless Boltzmann equation). In usual situations, the time scale for the collective dynamics is shorter than that of the diffusion dynamics. For long-term dynamics and/or high-peak current, one may need to include RHS to base the analysis on VFP equation.

Direct, 6-D solution can be very complicated. One may Taylor expand $f=f_0+f_1$ with $|f_1|\ll f_0$

- ▶ 0th order solution ⇒ pure optics transport and/or incoherent effects (e.g., IBS, ISR), PWD (for storage ring)
- 1st order solution \Rightarrow the collective dynamics

Phase space microbunching involves the dynamical evolution of **the characteristic functions of** f_1 , e.g., density modulation $b(k_z; s) = \frac{1}{N} \int f_1(\mathbf{X}; s) e^{-ik_z z_s} d\mathbf{X}$. Denote \mathbf{b}_{k_z} as $b(k_z; s), \forall s$.

Beam Dynamics Talk 30th March, 2021

Outline

ntroduction

IBS basics

Motivations

Theoretical formulation Model assumptions

EP solver

GUI Capabilitie

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Model assumptions

- 1. $|f_1| \ll f_0 \Rightarrow$ this assumption would fail when phase space modulation saturates (become distorted, filamented)
- 2. Modulation wavelength $\ll \sigma_z$ or coasting beam approximation \Rightarrow may fail when an electron bunch is critically compressed
- 3. Single-frequency assumption \Rightarrow relevant to coasting beam approximation

 \Rightarrow can be extended to quasi-multi-frequency for the case of large longitudinal phase space shearing

4. and so on

Beam Dynamics Talk 30th March, 2021

Outline

Introductior

IBS basics

Motivations

Theoretical formulation

Model assumptions Linear integral equations

/FP solver

GUI Capabilitie

Examples Ex1: RIBS ring

Summary

Backup slides

・ロト・日本・山田・山田・

Vlasov-Fokker-Planck equation

$$\frac{\mathrm{d}f}{\mathrm{d}s} = -\sum_{i=x,y,z} \frac{\partial}{\partial p_i} \left(D_i f \right) + \frac{1}{2} \sum_{i,j=x,y,z} \frac{\partial^2}{\partial p_i \partial p_j} \left(D_{ij} f \right)$$

Direct, 6-D numerical solution is too complicated. Here we

- 1. Decompose into the 0th and 1st order terms
 - Oth order (pure optics, IBS) ⇒ existing IBS formula⁷

$$\Rightarrow \frac{\mathrm{d}f_0}{\mathrm{d}s} = -\sum_{i=x,y,z} \frac{\partial}{\partial p_i} \left(D_i f_0 \right) + \frac{1}{2} \sum_{i,j=x,y,z} \frac{\partial^2}{\partial p_i \partial p_j} \left(D_{ij} f_0 \right)$$

- ▶ 1st order (collective effect) $\Rightarrow \frac{df_1}{ds} \approx -\frac{\partial f_0}{\partial \delta} \left(\frac{d\delta}{ds}\right)_1 - \frac{\partial}{\partial \delta} \left(D_{z,0}(s)f_1\right) - \frac{\partial}{\partial \delta} \left(D_{z,1}(s)f_0\right) + D_{zz,0}(s)\frac{\partial^2 f_1}{\partial \delta^2} + D_{zz,1}(s)\frac{\partial^2 f_0}{\partial \delta^2} \Rightarrow \text{ require further simplification}$
- 2. Instead of solving $f(\mathbf{X};s)\text{, we derive the evolution equations for}$

• density modulation
$$\Rightarrow b(k_z; s) = \frac{1}{N} \int f_1(\mathbf{X}; s) e^{-ik_z z_s} d\mathbf{X}$$

• energy modulation⁸ $\Rightarrow p(k_z; s) = \frac{1}{N} \int (\delta_s - hz_s) f_1(\mathbf{X}; s) e^{-ik_z z_s} d\mathbf{X}$

3. $\sigma^{(0)}_{\delta}(s), \epsilon^{(0)}_{\perp}(s)$ will be substituted into 1st-order equations

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivations

Theoretical formulation

Model assumptions Linear integral equations

/FP solver

GUI Canabilitic

Example

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

¹³For example, Piwinski, Bjorken-Mtingwa, K. Bane, K. Kubo, V. Lebedev, etc.

 $^{^{14}}$ The energy modulation refers to (z, δ) , different from that of EEHG-like energy band structure. (\equiv)

Linearized integral equations⁹

From definition of the diffusion and friction coefficients in VFP equation, for IBS, they can be derived

$$\begin{split} D_z(s) &= -\left(\frac{r_e[\mathsf{Log}]}{\gamma^2 \epsilon_{\perp,N}^2} \frac{I_b}{I_A}\right) \mathsf{erf}\left(\frac{\delta}{\sqrt{2}\sigma_\delta}\right) \\ D_{zz}(s) &= \frac{\sqrt{\pi}}{2} \left(\frac{r_e[\mathsf{Log}]}{\gamma^2 \epsilon_{\perp,N} \sigma_\perp} \frac{I_b}{I_A}\right) \end{split}$$

Substituting $f = f_0 + f_1$ into VFP and neglecting higher order terms of f_1 , we would obtain the linearized VFP equation. Expressed in terms of the density and energy modulations,

$$b(k_z;s) = \frac{1}{N} \int f_1(\mathbf{X};s) e^{-ik_z z_s} d\mathbf{X}$$
$$p(k_z;s) = \frac{1}{N} \int \delta_s f_1(\mathbf{X};s) e^{-ik_z z_s} d\mathbf{X}$$

we would obtain a set of linear coupled integral equations.

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

IBS basics

Motivations

Theoretical formulation Model assumptions

Linear integral equations

/FP solver

GUI

Capabilitie

Example

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

⁹C.-Y. Tsai, W. Qin et al., Phys. Rev. Accel. Beams 23, 124401 (2020) □ + < (□ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ + < □ +

Vlasov-Fokker-Planck equation^{0th order} (CIMP¹⁰)

Beam Dynamics Talk

30th March, 2021

¹⁰K. Kubo et al., PRST-AB 8, 081001 (2005)

Linearized matrix equations

Skipping the lengthy derivation, the set of linear integral equations can be expressed in the matrix equation in a compact way

$$\begin{bmatrix} \mathcal{P} & \mathcal{Q} \\ \mathcal{R} & \mathcal{S} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{k_z} \\ \mathbf{p}_{k_z} \end{bmatrix} = \begin{bmatrix} \mathbf{b}_{k_z}^{(0)} \\ \mathbf{p}_{k_z}^{(0)} \end{bmatrix}$$

where

$$\begin{split} \mathcal{P} &= \mathcal{I} - i\mathcal{K}_{Z_{\parallel}}^{(1)} - \mathcal{K}_{\mathsf{IBS},z}^{(1)} + 2\mathcal{K}_{\mathsf{IBS},zz}^{(2)} \\ \mathcal{Q} &= -i\mathcal{K}_{\mathsf{IBS},z}^{\perp(0)} - i\mathcal{K}_{\mathsf{IBS},zz}^{(3)} \\ \mathcal{R} &= \mathcal{K}_{Z_{\parallel}}^{(0)} - \mathcal{K}_{Z_{\parallel}}^{(2)}\sigma_{\delta\tau}^{2} - i\mathcal{K}_{\mathsf{IBS},z}^{(0)} - 2i\mathcal{K}_{\mathsf{IBS},z}^{(1)} + 4i\mathcal{K}_{\mathsf{IBS},zz}^{(1)} - 2i\mathcal{K}_{\mathsf{IBS},zz}^{(3)}\sigma_{\delta\tau}^{2} \\ \mathcal{S} &= \mathcal{I} + \mathcal{K}_{\mathsf{IBS},z}^{\perp(0)} - \mathcal{K}_{\mathsf{IBS},z}^{\perp(2)} + 3\mathcal{K}_{\mathsf{IBS},zz}^{(2)} - \mathcal{K}_{\mathsf{IBS},zz}^{(4)}\sigma_{\delta\tau}^{2} \end{split}$$

The kernel functions $\mathcal{K}_{Z_{\|}}$ involve collective effects and $\mathcal{K}_{\rm IBS}$ reflect the IBS effect.

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

IBS basics

Motivations

Theoretical formulation

Linear integral equations

/FP solver

GUI

Capabiliti

Example

Ex1: RIBS ring

Summary

Backup slides

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

An efficient, accurate tool for microbunching analysis

-			00_0000	
UT PAR	AMETERS		ADDITIONAL SETTINGS	
Beam (read from ELEGANT)			Include stead-state CSR in bends? (1-Yes, 0-No) 1	
	harm energy (Ga)0	4.54	If yes above, specify ultrarelativistic or non-ultrarelativistic model? (UR:1, NUR:2) 1	
	beam energy (dev)		want to include possible CSR shielding effect? (1-Yes, 0-No) 0	
	initial beam current (A)	654,2116	if yes above, specify the full pipe height in cm 1e+50	Model ass
compression factor 8.3187 normalized horizontal emittance (um) 1 normalized vertical emittance (um) 1		8.3187	include transient CSR in bends? (1-Yes, 0-No) 0	Linear int
		1	include CSR in drifts? (1-Yes, 0-No) 0	
		1	include LSC in drifts? (1-Yes, 0-No) 0	VFP sol
	rms energy spread	3e-05	if yes above, specify a model? (1:on-axis,2:ave,3:Gaussian,4:on-axis w/ round pipe) 1	GUI
		105	if 4 above, specify pipe radius in cm 1e+50	Capabiliti
Initial horizontal beta function (m) 105 Initial vertical beta function (m) 22 Initial vertical beta function 5 Initial vertical alpha function 0		100	include any RF element in the lattice? (1-Yes, 0-No)	
		22	if yes above, include linac geometric impedance? (1-Yes, 0-No)	
		5	Iongitudinal z distribution? (1-coasting, 2-Gaussian)	Ex1: RIB
		0		Ex2: EOF
	chirp parameter (m^-1) (z < 0 for bunch head)	39.83	calculate transverse-longiturinal modulation? (1-146, 0-10)	
attice —	start position (m) and positi	no (m)	Calculate Derbenev rador (1-res, 0-No)	
start position (m) end position (m)		an (nių	first-harmonic notification (available when energy_mod on)? (1-Yes, 0-No)	
	0		OUTPUT SETTING	
can para	imeter		Plot plot lattice functions, e.e. R56(s)? (1-Yes, 0-No)	
	lambria startiti (um)	1	plot beam current evolution I_b(s)? (1-Yes, 0-No)	
	lambda and family	105	plot lattice quilt pattern? (1-Yes, 0-No) 0	
scan_num01 10		100	plot gain function, i.e. G(s) for a specific lambda? (1-Yes, 0-No) 1	
		10	plot gain spectrum, i.e. Gf(lambda) at the end of lattice? (1-Yes, 0-No)	
	lambda_start02 (um)	0	plot gain map, i.e. Q(s,lambda)? (1-Yes, 0-No) 0	
	lambda_end02 (um)	0	plot energy spectrum? (1-Yes, 0-No) 0	
	scan_num02	0	Bun	
	mesh_num	600	Note: to terminate grass Otion GO HOKIES!!!	

Input files: elegant *.ele & *.lte

Available on Github: https://github.com/jcytsai/volterra_mat, version 4.2

More refined, friendly GUI is under development

Beam Dynamics Talk

30th March, 2021

Tool capabilities

	Our Vlasov solver	Heifets <i>et al</i> .	Huang and Kim
Vlasov model	linear, semi-analytical		linear, analytical
transverse emittance effect	yes	yes	yes
bending plane	horizontal & vertical	horizontal	horizontal
beam acceleration	yes	no	no
energy modulation	yes	no	yes, approximate expression
transverse-longitudinal modulation (x,z) or (x',z) (y,z) or (y',z)	yes	no	no
IBS	yes	no	no

	Our	Heifets et al	
	Vlasov solver	Huang and Kim	
steady-state	yes	yes	
free-space	NUR & UR	only UR	
entrance transient	yes	20	
free-space	UR	10	
exit transient	yes	20	
free-space	NUR & UR	10	
steady-state with	VOS	no	
shielding	yes	110	
	yes	no	
etric effect	yes	no	
	steady-state free-space entrance transient free-space exit transient free-space steady-state with shielding etric effect	Our Vlasov solver steady-state free-space yes NUR & UR entrance transient free-space yes UR exit transient free-space yes NUR & UR steady-state with shielding yes yes yes	

Note: NUR: Non-IlltraRelativistic UR: IlltraRelativistic

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Capabilities

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Backup slides

- nac

.

Example 1: 150-MeV quasi-isochronous ring¹¹

IBS may play a negligible effect on MB for one turn

¹¹C.-Y. Tsai et al., Phys. Rev. Accel. Beams 23, 124401 (2020), beamline lattice from S. DiMitri. < = > =

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Capabilitie

Example

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Order of magnitude estimate

	Storage ring light source	Middle-energy single-pass accelerator
Beam energy	\sim GeV	${\sim}100$ MeV
Particles per bunch	$10^{10}~{ m or}~{ m more}$	$10^{8} \sim 10^{9}$
Peak current	50~100 A	100 \sim a few kA
Normalized emittances	$\sim \mu { m m}$	$1~\mu$ m or lower
Fractional energy spread	$10^{-3} \sim 10^{-4}$	10^{-4} or smaller
Effective distance	∞	100 m \sim a few km

$$\begin{split} \text{IBS growth} \quad \tau_{\text{IBS}}^{-1} \left(\equiv \frac{1}{(\epsilon_{\perp}^{N}, \sigma_{\delta})} \frac{\mathsf{d}\left(\epsilon_{\perp}^{N}, \sigma_{\delta}\right)}{\mathsf{d}s} \right) \propto \frac{N_{b}}{\gamma^{2} \epsilon_{x}^{N} \epsilon_{y}^{N} \sigma_{z} \sigma_{\delta}} \\ \Rightarrow \tau_{\text{IBS,single-pass}}^{-1} \approx 10^{2 \sim 3} \tau_{\text{IBS,storage-ring}}^{-1} \end{split}$$

Energy chirp & bunch compression \Rightarrow another factor of $10 \sim 10^2$ enhancement

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivations

Theoretical formulation Model assumptions Linear integral equations

FP solver

GUI

_

Ex1: RIBS ring

Summary

Backup slides

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Slice energy spread (SES)

In addition to MBI gain, one may care more about SES. Short wavelength energy modulation \approx SES, which may be attributed to

- 1. pure optics $\Rightarrow \sigma_{\delta}^{\text{pure optics}} \approx C_{\text{tot}} \sigma_{\delta 0}$. Bunch compression increases SES.
- 2. IBS $\Rightarrow \sigma_{\delta,\text{IBS}}$ obtained from CIMP formula. Bunch compression will locally increase IBS growth rate.
- 3. collective effect $\Rightarrow \sigma_{\delta,\text{coll}}$ evaluated from energy modulation. Bunch compression increases peak current, thus enhancing collective effect

$$\sigma_{\delta,\mathrm{coll}}^2 = \frac{8}{n_b} C_{\mathrm{tot}} \int_0^{\lambda^*} \frac{\mathrm{d}\lambda}{\lambda^2} \left| \int_0^{s_f} \mathrm{d}\tau \frac{I_b(\tau)}{\gamma I_A} Z_0^{\parallel}(\lambda;\tau) \tilde{G}(\lambda;\tau) \right|^2$$

$$\sigma_{\delta,\text{tot}} \approx \begin{cases} \sqrt{C_{\text{tot}}^2 \sigma_{\delta 0}^2 + C_{\text{tot}}^2 \sigma_{\delta,\text{coll}}^2}, \text{ without IBS} \\ \sqrt{\sigma_{\delta,\text{IBS}}^2 + C_{\text{tot}}^2 \sigma_{\delta,\text{coll}}^2}, \text{ with IBS} \end{cases}$$

★ When is IBS beneficial to mitigate MBI? $\Rightarrow \sigma_{\delta,\text{tot}}^{\text{wo/IBS}} \gtrsim \sigma_{\delta,\text{tot}}^{\text{w/IBS}}$

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

Motivations

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Example

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Example 2: FODO-BC-FODO-BC transport line¹²

Both MBI and IBS heat the beam. However IBS-induced slice energy spread (SES) may further mitigate MBI.

Value	Unit
150	MeV
5~40	А
1.33×10^{-5}	
0.4	μ m
24.45	cm
	$\begin{tabular}{c} Value & 150 \\ $5{\sim}40$ \\ 1.33×10^{-5} \\ 0.4 \\ 24.45 \end{tabular}$

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

IBS basics

Motivations

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Capabilitie

Example

Ex1: RIBS ring

Ex2: FODO-BC-FODO-BC

Summary

Backup slides

¹²C.-Y. Tsai and W. Qin, Phys. Plasmas **28**, 013112 (2020)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Beam Dynamics Talk 30th March, 2021

Ex2: FODO-BC-FODO-BC

Figure: Slice energy spread for $I_{b0} = 20$ A for different energy chirps.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Beam Dynamics Talk 30th March, 2021

Figure: Slice energy spread for $I_{b0} = 40$ A for different energy chirps.

Outlin

Introduction

IBS basics

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Evamples

Ev1: RIBS rin

Ex2: FODO-BC-FODO-BC

Summary

Backup slides

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ● ● ●

Threshold condition

Below the contour plot draws $\sigma_{\Delta E, {\rm tot}}^{\rm wo/IBS} - \sigma_{\Delta E, {\rm tot}}^{\rm w/IBS}$

Beam Dynamics Talk 30th March, 2021

Outline Introduction IBS basics Motivations Theoretical formulation Model assumptions Linear integral equations VFP solver GUI Capabilities Examples Ext: RIBS ring Ex2: FODO-BC-FODO-BC Summary

Backup slides

Figure: () and (2) are elegant tracking results. Background are results from VFP calculation. Dashed line refers to the case $\sigma_{\Delta E, \text{tot}}^{\text{wo/IBS}} = \sigma_{\Delta E, \text{tot}}^{\text{wIBS}}$. Using multi-stage coefficient¹³, a semi-analytical expression of the threshold current can be found.

¹³C.-Y. Tsai, NIMA **943**, 162499 (2019).

Summary and Discussion

- To more accurately evaluate microbunching performance, it is better to perform 6-D start-to-end analysis. Either lower-dimensional or concatenated analysis would likely underestimate microbunching performance
- Detailed optics balance is key to control microbunching
 - Variation of lattice functions would matter for microbunched beam \Rightarrow has been taken into account in our VFP solver
- A convenient semi-analytical VFP solver is developed and benchmarked with particle tracking simulations. Many extensions are ongoing
- Tool capabilities of the existing solver are summarized, including beam and field dynamics
- We expect that after possible extension this analysis may be applicable to
 - improved performance estimate of advanced FEL schemes
 - SSMB beam dynamics analysis

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

xamples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Acknowledgements

- Thank Dr. Torsten Limberg and Dr. Najmeh Mirian for the invitation
- Development of the semi-analytical VFP solver is a long, ongoing process. During these years, I benefit much from Steve Benson, Slava Derbenev, David Douglas, Rui Li, Chris Tennant (JLab), Irwan Setija (ASML), Weilun Qin (DESY)
- Stimulating discussions from colleagues/supervisors/friends: Simone DiMitri, Giovanni Perosa (FERMI-Elettra), Yi Jiao (IHEP), He Zhang, Yuhong Zhang (JLab), Juhao Wu, Guanqun Zhou (SLAC), Xiujie Deng (Tsinghua University)

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

Motivations

Theoretical formulation Model assumptions Linear integral equations

(FP solver

GUI Capabilities

Examples Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Backup slides

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Acknowledgements

Thank you for your attention

Beam Dynamics Talk 30th March, 2021

Outline

Introduction

IBS basics

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Backup slides

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Vlasov-Fokker-Planck equation

$$\frac{\mathrm{d}f}{\mathrm{d}s} = -\sum_{i=x,y,z} \frac{\partial}{\partial p_i} \left(D_i f \right) + \frac{1}{2} \sum_{i,j=x,y,z} \frac{\partial^2}{\partial p_i \partial p_j} \left(D_{ij} f \right)$$

Direct, 6-D numerical solution is too complicated. Here we

- 1. Decompose into the 0th and 1st order terms
 - Oth order (pure optics, IBS) ⇒ existing IBS formula¹⁴

$$\Rightarrow \frac{\mathrm{d}f_0}{\mathrm{d}s} = -\sum_{i=x,y,z} \frac{\partial}{\partial p_i} \left(D_i f_0 \right) + \frac{1}{2} \sum_{i,j=x,y,z} \frac{\partial^2}{\partial p_i \partial p_j} \left(D_{ij} f_0 \right)$$

- ▶ 1st order (collective effect) $\Rightarrow \frac{df_1}{ds} \approx -\frac{\partial f_0}{\partial \delta} \left(\frac{d\delta}{ds}\right)_1 - \frac{\partial}{\partial \delta} \left(D_{z,0}(s)f_1\right) - \frac{\partial}{\partial \delta} \left(D_{z,1}(s)f_0\right) + D_{zz,0}(s)\frac{\partial^2 f_1}{\partial \delta^2} + D_{zz,1}(s)\frac{\partial^2 f_0}{\partial \delta^2} \Rightarrow \text{ require further simplification}$
- 2. Instead of solving $f(\mathbf{X};s)\text{, we derive the evolution equations for}$
 - density modulation $\Rightarrow b(k_z; s) = \frac{1}{N} \int f_1(\mathbf{X}; s) e^{-ik_z z_s} d\mathbf{X}$
 - energy modulation¹⁵

 $\Rightarrow p(k_z;s) = \frac{1}{N} \int \left(\delta_s - hz_s\right) f_1(\mathbf{X};s) e^{-ik_z z_s} \mathsf{d}\mathbf{X}$

3. $\sigma^{(0)}_{\delta}(s), \epsilon^{(0)}_{\perp}(s)$ will be substituted into 1st-order equations

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

IBS basics

Motivation

Theoretical formulation Model assumptions Linear integral equations

/FP solver

GUI Canabilitie

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

¹³For example, Piwinski, Bjorken-Mtingwa, K. Bane, K. Kubo, V. Lebedev, etc.

 $^{^{14}}$ The energy modulation refers to (z, δ) , different from that of EEHG-like energy band structure. < \equiv > =

Vlasov-Fokker-Planck equation^{0th order} (CIMP¹⁶)

Beam Dynamics Talk

30th March, 2021

¹⁶K. Kubo et al., PRST-AB 8, 081001 (2005)

Vlasov-Fokker-Planck equation^{1st order}

The integral equation of Volterra type for the density modulation

$$\begin{split} b(k_z;s) &= b_0(k_z;s) + i \int_0^s K_{Z_{\parallel}}^{(1)}(\tau,s) b(k_z;\tau) \mathsf{d}\tau \\ &+ \int_0^s K_{\mathsf{IBS},z}^{(1)}(\tau,s) b(k_z;\tau) \mathsf{d}\tau + i \int_0^s K_{\mathsf{IBS},z}^{\perp(0)}(\tau,s) p(k_z;\tau) \mathsf{d}\tau \\ &- 2 \int_0^s K_{\mathsf{IBS},zz}^{(2)}(\tau,s) b(k_z;\tau) \mathsf{d}\tau + i \int_0^s K_{\mathsf{IBS},zz}^{(3)}(\tau,s) p(k_z;\tau) \mathsf{d}\tau \end{split}$$

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

Motivation

Fheoretical formulation Model assumptions Linear integral equations

/FP solver

GUI

Examples

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

・ロト ・ 同ト ・ ヨト ・ ヨー・ つへぐ

Vlasov-Fokker-Planck equation^{1st order}

The integral equation of Volterra type for the energy modulation

$$\begin{split} p(k_{z};s) &= p_{0}(k_{z};s) - \int_{0}^{s} \left[K_{Z_{\parallel}}^{(0)}(\tau,s) - K_{Z_{\parallel}}^{(2)}(\tau,s)\sigma_{\delta_{0}}^{2} \right] b(k_{z};\tau) \mathrm{d}\tau & \text{Horeical formula intermediation in the second se$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Beam Dynamics Talk 30th March, 2021

Beam Dynamics Talk 30th March, 2021

Outlin

Introduction

IBS basics

Motivation

Theoretical formulation Model assumptions Linear integral equations

VFP solver

GUI

Capabilitie

Example

Ex1: RIBS ring Ex2: FODO-BC-FODO-BC

Summary

Backup slides

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ