Overview of Start-to-End Simulation Activities towards CW Regime Operation of XFEL

Kickoff • Oct.-Nov.2020

Ye Chen & Martin Dohlus On behalf of S2E BD Group at DESY, Virtual BD Meeting, 10.11.2020

Thanks to co-workers: D. Bazyl, I. Zagorodnov, F. Brinker, S. Tomin, S. Meykopff, T. Limberg, W. Decking, B. Beutner, E. Vogel, M. Scholz, M. Guetg, S. Liu, E. Schneidmiller & many others from PITZ, MPY, MXL & MSL

Outline

- Background, Motivation & Goals
- > SRF-gun based cw injector optimization (D. Bazyl)
- ➢ RF energy gain budgets in CW regime (inputs from E. Vogel)
- \blacktriangleright Accelerator S2E simulation capabilities (injector \rightarrow undulator)
 - ✓ OCELOT, IMPACT-Z
- Summary & Outlook
- Backup Slides
 - ✓ SASE simulations

Background

✓ R&D activities towards a CW XFEL under continuous reviews of DESY Machine Advisory Committee

- \rightarrow Not only about a CW injector
- → But also involving S2E BD studies (Injector to Undulator)

✓ Forward-looking guidance (2014)

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

Volume 768, 21 December 2014, Pages 20-25

Prospects for CW and LP operation of the European XFEL in hard X-ray regime

R. Brinkmann, E.A. Schneidmiller 🙁 🖾, J. Sekutowicz, M.V. Yurkov

Show more 🧹

https://doi.org/10.1016/j.nima.2014.09.039

Get rights and content

NUCLEAR METRUMENT A METHODS B PRITICS RESEARCH The European XFEL will operate nominally at 17.5 GeV in SP (short pulse) mode with 0.65 ms long bunch train and 10 Hz repetition rate. A possible upgrade of the linac to CW (continuous wave) or LP (long pulse) modes with a corresponding reduction of electron beam energy is under discussion for many years. Recent successes in the dedicated R&D program allow to forecast a technical feasibility of such an upgrade in the foreseeable future. One of the challenges is to provide sub-Ångström FEL operation in CW and LP modes. In this paper we perform a preliminary analysis of a possible operation of the European XFEL in the hard X-ray regime in CW and LP modes with electron energies of 7 GeV and 10 GeV, respectively. We consider lasing in the baseline XFEL undulator as well as in a new undulator with a reduced period. We show that, with reasonable requirements on electron beam quality, lasing on the fundamental will be possible in the sub-Ångström regime. As an option for generating brilliant photon beams at short wavelengths we also consider harmonic lasing that has recently attracted a significant attention.

Background (cont'd)

- ✓ R&D activities regarding choices of the CW gun in light of S2E simulation results
 - \rightarrow Performance of various CW injectors in S2E beam dynamics

Motivation & Goals

> Optimizing injector

- > Capability studies of conserving e-bunch qualities through whole beamline
- Finer S2E investigations including micro bunching
- Lasing performance with optimized e-bunches before undulators

XFEL machine configuration

W. Decking et al, A MHz-repetition-rate hard Xray free-electron laser driven by a superconducting linear accelerator, Nat. Photonics14, 391 (2020)

CW machine configuration staying same for current simulation studies

- > a high harmonic module linearizing the longitudinal phase space
- three bunch compressors compressing the bunch to several kAs
- design optics providing a special phase advance between bunch compressors to reduce CSR

Energy gain budget in CW regime

- ➢ First evaluation (E. Vogel):
 - 16 MV/cavity for 1.3 GHz
 - 4 MV/cavity for 3.9 GHz
 - Beam energy at CW injector linac exit: 90 to 110 MeV
 - Beam energy at BC1: 500 MeV
 - Beam energy at BC2: 2 GeV
 - Beam energy at exit of L3 (25 + 3 RF stations with 32 cavities each): 8 to 9 GeV
- A preliminary S2E energy profile for simulations
 >110/500/2000/8000 MeV
- > A general optimization goal at a suitable S2E working point
 - →reasonably conserved central slice emittance;
 - →kAs peak current & smooth profile;
 - \rightarrow reasonable slice energy spread before undulators.

S2E BD with OCELOT

→ searching working points for beam acceleration, transport & compression

→ stable compression
→ required bunch qualities before undulators
→ good SASE in hard X-ray regime

Longitudinal beam dynamics optimization

Multi-parametric optimization according to RF tolerance & collective effects Gun LH the first and the second derivatives of the global compression BC_2 **BC**₁ DL $E_2 = 500 \, \text{MeV}$ $E_3 = 2000 \, \text{MeV}$ energy in BC: $E_1 = 110 { m MeV}$ deflecting radius: $r_{56,1} = ?$ $r_{56,2} = ?$ $r_{56,3} = ?$ compression factor: $C_1 = ? C_2 = ?$ $C_3 = I_{\text{final}} / I_{\text{gun}}$

→ Searching for an optimal choice of parameters under technical constraints e.g. E1/E2/E3→C3→C3'→r1→C1/C2/r2/r3→C3''

Longitudinal beam dynamics optimization

→ Searching for an optimal choice of parameters under technical constraints
→ Final bunch length & peak current sensitive to energy chirp, thus to RF parameters

Longitudinal beam dynamics optimization (cont'd)

PHYSICAL REVIEW ACCELERATORS AND BEAMS 22, 024401 (2019)

Accelerator beam dynamics at the European X-ray Free Electron Laser

Igor Zagorodnov and Martin Dohlus Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22603 Hamburg, Germany

Sergey Tomin The European X-Ray Free-Electron Laser Facility GmbH, 22869 Schenefeld, Germany

(Received 10 October 2018; published 13 February 2019)

 $\begin{aligned} A(\mathbf{x}) &= \mathbf{f}, \\ \mathbf{f} &= (E_1^0, E_2^0, E_3^0, Z_1, Z_2, Z_3, Z_3', Z_3''), \rightarrow \text{BD parameters} \\ \mathbf{x} &= (X_{11}, Y_{11}, X_{13}, Y_{13}, X_2, Y_2, X_3, Y_3), \rightarrow \text{RF parameters} \\ \mathbf{x}_0 &= A_0^{-1}(\mathbf{f}) \quad \Rightarrow \text{analytical} \\ \mathbf{x}_n &= A_0^{-1}(\mathbf{g}_n), \qquad \mathbf{g}_n &= \mathbf{g}_{n-1} + \lambda [\mathbf{f} - A(\mathbf{x}_{n-1})], \quad n > 0, \\ \mathbf{g}_0 &= \mathbf{f}, \qquad \mathbf{x}_0 &= A_0^{-1}(\mathbf{f}). \quad \Rightarrow \text{ iterative algorithm} \end{aligned}$

- → Searching suitable RF parameters x to produce desired compression scheme f
 - → Mapping RF parameters into longitudinal BD parameters
 - \rightarrow Realized by OCELOT

A simulation toolkit: OCELOT

Courtesy: Sergey Tomin

🔒 ocelot-collab / oce	Watch ■ 14 ☆ Star 33 ♀ Fork 24					
<> Code () Issues 8	1 Pull requests 1 O Actions III Projects 3 II W	/iki 🛈 Security 🗠 Insights				
រូះ master 👻 រូះ	4 branches 🔿 29 tags	Go to file Add file ▼	About			
sergey-tomin PE	P warnings fixed	8ce404a 3 days ago 🕚 2,147 commits	OCELOT is a multiphysics simulation toolkit designed for studying FEL and storage ring-based light sources			
demos	fixed some PEP warnings in PFS module	3 days ago				
docs	Make sphinx documentation buildable	19 days ago	python ocelot-collab ocelot S.Tomin, I.Agapov, M.Dohlus, I.Zagorodnov,			
ocelot	PEP warnings fixed	3 days ago				
ocelot_gui	update lat2input function in cpbd/io.py file	2 years ago				
unit_tests	added bump utils and unit tests	4 days ago	Ocelot as framework for			
🗋 .gitignore	Make sphinx documentation buildable	19 days ago	beam dynamics simulations of x-ray sources, in Proceedings of IPAC 2017, WEPAB031			
AUTHORS	corrected email	7 months ago				
	changed multiplication TM on Particle.	4 years ago				
README.md	updated readme.md	4 days ago				
🗅 setup.py	fixed some PEP warnings in PFS module	3 days ago				

Courtesy: Sergey Tomin

An Introduction to Ocelot

Ocelot is a multiphysics simulation toolkit designed for studying FEL and storage ring-based light sources. Ocelot is written in Python. Its central concept is the writing of python's scripts for simulations with the usage of Ocelot's modules and functions and the standard Python libraries.

Ocelot includes following main modules:

- Charged particle beam dynamics module (CPBD)

 optics
 - tracking
 - matching
 - · collective effects (description can be found here and here)
 - Space Charge (3D Laplace solver)
 - CSR (Coherent Synchrotron Radiation) (1D model with arbitrary number of dipoles).
 - Wakefields (Taylor expansion up to second order for arbitrary geometry).
 - MOGA (Multi Objective Genetics Algorithm) ref.
- Native module for spontaneous radiation calculation (some details can be found here and here)
- FEL calculations: interface to GENESIS and pre/post-processing
- Modules for online beam control and online optimization of accelerator performances. ref1, ref2, ref3, ref4.
 This module is being developed in collaboration with other accelerator groups. The module has been migrated to a separate repository (in ocelot-collab organization) for ease of collaborative development.

 An iterative algorithm for searching RF parameters for compression studies also implemented in OCELOT

A fast estimation for S2E BD in OCELOT → injector bunches optimized by D. Bazyl

Case study with one of the optimized bunches from the injector (emittance < 0.3 μm)</p>

A fast estimation for S2E BD in OCELOT (cont'd)

A set of longitudinal beam dynamics parameters & a set of RF parameters aiming for ~3.5 kA at 100 pC, e.g.
The result of the LH me

energy, MeV	110	500	2000			
r56, mm	73.8	76.4	24.1			
compression sp	3	30	700			
with Z'_3 , $1/m = 0 \& Z''_3$, $1/m/m = 800$						

The power of the LH model chosen to produce an energy modulation amplitude on axis & to have after compression an rms slice energy spread near to ~3 MeV based on dedicated µB studies

RF	V_{A1} , MV	$oldsymbol{arphi}_{A1},\mathrm{deg}$	V _{AH1} , MV	$oldsymbol{arphi}_{AH1},$ deg	<i>V_{L1}</i> , MV	φ_{L1} , deg	V_{L2} , MV	φ_{L2} , deg
	123.44	-7.462	20.01	153.41	414.89	19.93	1754	31.2

A fast estimation for S2E BD in OCELOT (cont'd) → particle distribution before SA1 (case of 3.5 kA)

NO micro bunching effect possibly considered in the simulations

A fast estimation for S2E BD in OCELOT (cont'd)

Slice emittance before undulators

 First estimations by OCELOT showing for kAs' peak current the bunch quality before undulators can be ~conserved compared to that of the injector bunch without significant growth of central slice emittance

BD studies with Impact-Z (M. Dohlus)

→ Microbunching effect

→ ongoing investigations with huge number of simulation particles & very fine numerical resolution

Fine Simulations with Impact-Z using 62 Millions macro particles for 100 pC (1 simulation particle ~ 10 electrons)

Laser Heater (LH) set-point: 0 eV/3300 eV/4000 eV/5000 eV

Fine Simulations with Impact-Z using 62 Millions macro particles (cont'd)

LH set-point: 0 eV/3300 eV/4000 eV/5000 eV

Fine Simulations with Impact-Z using 62 Millions macro particles (cont'd) → further increasing LH SP

Fine Simulations with Impact-Z using 62 Millions macro particles (cont'd) → further increasing LH SP

Summary & Outlook

- > We started
- S2E BD studies with optimized bunches from a SRF CW injector
 - → First results indicating bunch quality can be conserved before the undulator beamline without significant growth of the central slice emittance while being compressed to ~kAs
 - \rightarrow Estimated by **OCELOT** w/o micro bunching
 - \rightarrow Being simulated by Impact-Z with micro bunching (ongoing)
 - → Being simulated by **Xtrack** (ongoing)
 - → Warm-up lasing studies indicating SASE signals of mJ & hundreds µJ @ 0.24 & 0.17 nm w/o optimization or undulator modification (→ backup slides)
- ➤ Work towards CW regime

 \rightarrow

Injector optimization

- \rightarrow Tool studies for covering all collective effects properly
- \rightarrow Compression scenarios \rightarrow
 - \rightarrow Systematic SASE studies
 - \rightarrow Undulator R&D, etc.

S2E Home S2E Home Elimberg, Torsten (leader) Bazyl, Dmitry Beutner, Bolko Chen, Ye Lining Dohlus, Martin Kot, Yauhen Tomin, Sergey

<u>Zagorodnov, Igor</u>

Backup Slides: SASE Simulations

Lasing @ 0.24 nm with the impact-Z bunch ("µB on") at a laser heater set-point of 5 keV

→ 100pC, ~8GeV, ~3.2kA, SA1

 \rightarrow w/o any optimization or modification to undulator configuration

Lasing @ 0.17 nm with the impact-Z bunch ("µB on") at a laser heater set-point of 5 keV

→ 100pC, ~8GeV, ~3.2kA, SA1

 \rightarrow w/o any optimization or modification to undulator configuration

Laser heater impacts study for pulsed XFEL machine → 100pC, after BC2

 \rightarrow w/o any optimization or modification to undulator configuration

LPS w/o LH

LPS w/ LH

- Peak current ~1.8 kA
- Central emittance $\sim 0.5 \ \mu m$
- Energy spread ~ 2 MeV

- Peak current ~4.0 kA
- Central emittance $\sim 0.5 \ \mu m$

0.15

• Energy spread ~ 1.8 MeV

Laser heater impacts study for pulsed XFEL machine → 100pC, 14GeV, SA1

 \rightarrow w/o any optimization or modification to undulator configuration

LH on, lasing@9keV LH off → barely lases@9keV

