

Beam dynamics with realistic bunches at the European XFEL

Ye Chen BD Meeting, DESY Hamburg 14.04.2020

European XFEL

an online talk given in the COVID-19 period

Introduction / Motivation

One of the follow-ups for the talk given by F. Brinker, BD meeting, Dec. 2019:

"Beam dynamics at the XFEL injector: Collection of observations and questions"

This work deals with "realistic" bunches used for improving beam dynamics simulations *What observed*? *Why important*? *How to improve*? *Some results*?

Another recent work on statistical simulations of photocathode for the XFEL

OBSERVATIONS

DESY.

Ye Chen, 14.04.2020

Experimental observation of emission curve (charge vs. UV energy) Dec. 2017→ Sept. 2019 → working point shifting to stronger space-charge affected regime

→ directly injecting 250 pC for simulation may not be sufficient to represent beam dynamics correctly

- \rightarrow due to different space-charge densities near cathode
- \rightarrow dynamics described by the emission curve \rightarrow reproducing measured curves is the basis for BD simulations

Ye Chen, 14.04.2020

Experimental observation of QE map May 2016 → Nov. 2019

→Homogeneity of cathode QE map seems degraded
→ effective spot size on cathode reduced (!?)

Re-measured QE map in 01.2020 for the same cathode → decision made for cathode exchange on 14th Jan. 2020

European XFEL

European XFEL

Homogenetiy of measured QE maps (projections) before & after the exchange

Ye Chen, 14.04.2020

BD meeting

Measurements of temporal cathode UV laser profile

→ measured / cross-checked with streak camera & autocorrelation

Summary

What observed?→ QE & QE map homogeneity degreation

Why important?

→ affecting e-bunch production via photoemission (convolution of QE map & laser intensity distribution)
 → affecting emission dynamics (accelerator working point shifted to stronger space-charge regime)

NB: not only the QE map, but also the degradation of laser intensity map, temporal profile, cathode surface conditions could result in similar effects.

How to improve?

→ model produced e-bunch based on routinely updated measurements

→ consider it for beam dynamics with a proper numerical tool (presumably in 3D)

MODELING OF 3D E-BUNCH VIA PHOTOEMISSION

Quantum efficiency map (measured) of Cs₂Te thin film → an extensively used photocathode (after 5+ years operation at XFEL)

Quantum efficiency map (measured) of Cs₂Te thin film → an extensively used photocathode (after 5+ years operation at XFEL)

13

Quantum efficiency map (measured) of Cs₂Te thin film → an extensively used photocathode (after 5+ years operation at XFEL)

Photocathode drive laser spot (measured)

 \rightarrow shaped trans. distro. with beam shaping aperture (BSA)

Measurement-based 3D e-bunch generation at photocathode (transverse)

Measurement-based **3D** e-bunch generation at photocathode (transverse & temporal)

- Laser spot size \neq e-bunch size on cathode
- Laser spot distribution \neq e-bunch distribution
- For the old cathode, transverse e-bunch size reduced by ~17% w.r.t. laser spot size
- Re-locating laser spot on the emissive area could not solve the issue due to large QE map inhomogeneties

USING REALISTIC E-BUNCHES FOR BEAM DYNAMICS

Simulation tools

KRACK3 (3D), Martin Dohlus, gun / injector simulations

3D space-charge (SP-CH) solver from cathode

Introduction: http://www.desy.de/fel-beam/data/talks/files/2017.00.31_11_26_26_53_1_NonUnifCathode.pdf

ASTRA (2D/3D), Klaus Floettmann, gun / injector simulations

OCELOT, Sergey Tomin, particle tracking with collective effects, gun \rightarrow undulators

Naming convention in this talk

Krack3 3D: 3D SP-CH solver from cathode (start-to-end)

Astra 2D-transition-3D:

Transition from cylindrical symmetric SP-CH algorithm to 3D SP-CH algorithm at e.g. z=10 cm where image-charge no longer plays

Improving beam (emission) dynamics (1)

Improving beam (emission) dynamics (2)

Using asymmetric e-bunches Krack 3 vs. Measurement → significant improvements Astra vs. Krack 3 → Astra can still provide a good approximation for the case with asymmetric bunches (depends on where the working point settles along the emission curve)

Extensive convergence studies performed in Krack 3 & Astra

First done by Martin, then rechecked by Ye and Igor

Numerical convergence rechecked in terms of / combinations of

Number of simulation particles (up to 2M) \rightarrow sensitive

Longitudinal mesh dz (down to ~ 10 nm) \rightarrow sensitive

Simulation time step (down to ~25fs)

Transverse mesh steps (≥50 steps per sigma)

An example

Both codes converging, however, to slightly different bunch charges

BUNCH LENGTH & SHAPE AT INJECTOR EXIT

Bunch length vs. bunch charge (130 MeV at injector exit)

Ye Chen, 14.04.2020

Behavior of bunch lengthening w.r.t. gun phasing (in astra)

Linear regime in B: bunch length in A is phase dependent

Space charge dominated regime in B: compression leads to stronger charge loss, even shorter bunch length in A Phase variation seems not reproducing the behaviors observed in the measurements European XFEL

Bunch shape: with worn cathode, 130 MeV, 250 pC, injector exit

Bunch shape: with fresh cathode, 130 MeV, 250 pC, injector exit

close bunch length and similar bunch shape

European XFEL

Simulation studies on bunch shapes due to space-charge

→ defining several cases (working conditions) for simulations

Ye Chen, 14.04.2020

Simulated bunch shapes vs. space-charge (worn cathode case)

An example: curvature formation in bunch profile

→ strongly space-charge affected case

ON EMITTANCE (ONLY OLD DATA) → new systematical studies by Yauhen in a later talk

Measured projected emittance (old data, worn cathode)

33

Simulations for the old data

34

CODE DEVELOPMENT: STATISTICAL PHOTOCATHODE SIMULATION AT XFEL

A Monte-Carlo approach developed for cathode simulations at XFEL

Goal (cathode performance evaluation) & Status (coding finished)

Features

Density of States based

MC modeling of scattering effects (electron-electron, electron-hole, electron-phonon)

implemented in Matlab, flexibilities to incorporate with Martin's "eddy gun" solver and Krack 3

Benchmarking

- comparisons with INFN data & simulations (\rightarrow O.K.)
- applications to response time measurements

Matlab-Package for photocathode gun simulations

- XFEL MC code (cathode properties)
- Eddy gun (consideration of field penetration)
- Krack 3 (3D particle tracking with valid image-charge on cathode)

missing plot(s) due to inaccessible remote desktop of my DESY PC since last Thursday

Thank you for your attention!