About some issues in the measurements at the Injector on 30.10.2019

Igor Zagorodnov
XFEL Beam Dynamics Meeting
DESY, Hamburg
11.02.20
The first zero crossing at TDS

The second zero crossing at TDS
The current from the *first/*second* zero crossing at TDS
\[V(0) = 122.74 \text{ MV} \]

\[V(\varphi) = \frac{V(0)}{\cos(\varphi)} \]

\[y_{RF}(t, \varphi) = eV(\varphi)\cos(\omega t + \varphi) \]

\[y_M(t, \varphi) = \Delta E(t) + eV(\varphi)\cos(\varphi) \]

There is a phase dependence of the energy and the curvatures disagree on the left plot. Do we have a phase shift?
\[V(0) = 122.74 \text{ MV} \]
\[V(\phi) = \frac{V(0)}{\cos(\phi)} \]

\[y_{RF}(t, \phi) = eV(\phi)\cos(\omega t + \phi + \phi_0) \]

\[y_M(t, \phi) = \Delta E(t) + y_{RF}(0, \phi) \]

\[\Delta E_{LH}(\phi) = E_{LH}(\phi) - E_{LH}(0) \]

\[\Delta E_{RF}(\phi) = y_{RF}(0, \phi) - y_{RF}(0, 0) \]

\[V_0 = 122.76 \text{ MV} \]

\[\phi_0 = -0.94 \text{ deg} - \text{systematic error?} \]
There is a weak phase dependence of the energy and the curvatures disagree on the left plot. Do we have a phase shift in AH1 as well?

\[
V(0) = 122.74 \text{ MV}
\]

\[
V_3(0) = 15.25 \text{ MV}
\]

\[
V_3(\varphi_3) = \frac{V_3(0)}{\cos(\varphi_3)}
\]

\[
\varphi_0 = -0.94 \text{ deg}
\]

\[
y_{RF}(t, \varphi) = eV(0)\cos(\varphi_0) + eV_3(\varphi_3)\cos(3\omega t + \varphi_3)
\]

\[
y_{RF}(0, \varphi) = \Delta E(t) + y_{RF}(0, \varphi)
\]

\[
\Delta E_{LH}(\varphi) = E_{LH}(\varphi) - E_{LH}(0)
\]

\[
\Delta E_{RF}(\varphi) = y_{RF}(0, \varphi) - y_{RF}(0, 0)
\]
$V(0) = 122.74 \, MV$

$V_3(0) = 15.25 \, MV$

$V_3(\varphi_3) = \frac{V_3(0)}{\cos(\varphi_3)}$

$\varphi_0 = -0.94 \, \text{deg}$

$y_{RF}(t, \varphi) = eV(0)\cos(\varphi_0) + eV_3(\varphi_3)\cos(3\omega t + \varphi_3 + \varphi_0)$

$y_M(t, \varphi) = \Delta E(t) + y_{RF}(0, \varphi)$

$\Delta E_{LH}(\varphi) = E_{LH}(\varphi) - E_{LH}(0)$

$\Delta E_{RF}(\varphi) = y_{RF}(0, \varphi) - y_{RF}(0, 0)$

$\varphi_0 = -1.04 \, \text{deg} - \text{systematic error?}$
Horizontal orbit change during A1 phase scan with the “constant” beam energy (S. Tomin).
Vertical orbit change during A1 phase scan with the “constant” beam energy (S. Tomin).
Summary

• The on-crest phase defined with “IntelliPhase” differs from the direct fit of TDS measurements to RF curvature. The systematic error is about 1 degree for A1 and 1 degree for AH1. We need an additional study to find the reason:
 • space-charge,
 • wakefields,
 • ...

• We need a model to explain the trajectory offset dependences from the phase in A1 for approx. “constant” energy
 • coupler kick,
 • RF focusing,
 • ...