uB in XFEL

one stage, rigid beam approximation shot noise and rms current fluctuation induced energy spread

better models LGM 1d particle model 3d periodic

XFEL with 1d particle model

XFEL with 3d periodic
comparison with non-periodic
increased initial energy spread (gaussian) \rightarrow BC1 exit
increased initial energy spread (LH)

 \rightarrow BC2 exit

 \rightarrow BC0 exit

summary/conclusion

one stage, rigid beam approximation

$$G = \left(1 - i \frac{Cr_{56}}{\mathcal{E}_{\text{ref}}/e} I_1 k_1 Z\right) \exp\left(-\frac{(Ck_1 r_{56} \sigma_{\delta})^2}{2}\right)$$

round beam space charge impedance:

$$Z = \int_{S_1}^{S_2} Z'(\sigma_r(S), \gamma(S)) dS$$

"effective" beam size:

$$\sigma_r(Z) = \left(\varepsilon_x(Z)\beta_x(Z)\varepsilon_y(Z)\beta_y(Z)\right)^{1/4}$$

multi stage gain (pre LGM!)

$$G = G_1 G_2 G_3$$
 for large one stage gains

beam current and wave number before compression energy profile and optic (normalized emittance =0.2 um)

 $\sigma_{E1} = 450 \text{ eV}$

$$\sigma_{E1} = 450 \text{ eV}$$

$$\rightarrow \sigma_{E4} = C_{tot} \sigma_{E1} = 155 \text{ keV}$$

$$max \{G\} > 10^4$$

$$max \{G\} > 10^4$$

shot noise and rms current fluctuation

 I_1 initial coasting beam

$$I_{rms,in} = \sqrt{\frac{eI_1}{\pi} |\omega_1 - \omega_2|}$$

white shot noise \rightarrow

rms current fluctuation of initial coasting beam in frequency range between ω_1 and ω_2

$$\rightarrow I_{rms,out} = C_{\sqrt{\frac{eI_1}{\pi} \int_{\omega_1}^{\omega_2} |G(\omega)|^2} d\omega$$

linear amplified noise (from the initial frequency range, transformed to $C\omega_1$ and $C\omega_2$)

this does not consider the shot noise of the compressed beam nor shot noise after intermediate stages

assumption: shot noise of later stages is negligible compared to amplified initial noise

induced energy spread: linear regime + rigid beam

effect of impedance after compressor, range from S_1 to S_2

$$C(S_{1} \le S < S_{2}) = C$$

$$G(\omega, S_{1} \le S < S_{2}) \approx G(\omega)$$

$$Z(\omega) = \int_{S_{1}}^{S_{2}} Z'(\omega, S) dS$$

$$\Delta \boldsymbol{\mathcal{E}}_{rms} \approx eC \sqrt{\frac{eI_1}{\pi} \int \left| Z(\boldsymbol{\omega}) G(\boldsymbol{\omega}) \right|^2 d\boldsymbol{\omega}} \approx eI_{rms, \text{out}} \left| Z_{eff} \right|$$

linear regime

$$\frac{I_{rms,out}}{CI_1} \ll 1 \rightarrow \frac{e}{\pi} \int_{\omega_1}^{\omega_2} |G(\omega)|^2 d\omega \ll I_1$$
$$I_1 = 5.8 \text{ A}$$

multiplicative one stage rigid beam approximation:

no!

better models

example: LGM vs 1d particles

XFEL with 1d particle model

back to Igor's problem, only 1st stage but with r₅₆ of LH and DOGLEG

C1 = 3.5	$C_2 = 8 C_3$	= 344 = 12.2857
I. = 5.8 Å	I2=21A I.	3 = 22 165A
1501=0.075	r ₅₆₂ =0.059	V563= 0.018
3 = 0.45 KeV	8, = 1.5 mV	83 = 10 KeV
=== 130 MeV	Ez= 200 MeV	E3= 2400 MeV
E,= 0.18 pm		23= 0.2 /m

simplified 1d particle model continuous drifts:

$$\frac{dz_{\nu}}{dS} = \frac{1}{\gamma^2} \delta_{\nu}$$
$$\frac{d\delta_{\nu}}{dS} \sim \operatorname{Re}\left\{\tilde{I}Z'\exp\left(-ikz_{\nu}\right)\right\}$$
$$\tilde{I} \sim \sum_{\nu}\exp\left(ikz_{\nu}\right)$$

discrete compression stages:

$$z_{\nu}^{(\text{out})} = z_{\nu}^{(\text{in})} + r_{56} \delta_{\nu}^{(\text{in})}$$
$$\delta_{\nu}^{(\text{out})} = \delta_{\nu}^{(\text{in})}$$

comparison for simulation with two different band widths same initial particle distribution!

non linear mixing of phase space:

before BCO: similar time signals

after BCO: different time signals but similar rms- and similar frequency-structure

current fluctuation can be decreased

XFEL with 3d periodic

comparison with non-periodic

March 27, 2019

beam parameters:

initial beam current 5.8A; normalized emittance after A1 0.188 μm (in both planes); initial energy 6.65 MeV; initial beamline coordinate 3.3 m; uncorrelated energy spread 450 eV, gaussian; bunch is generated by random generator; horizontal, vertical and longitudinal phase spaces are decoupled; the initial beam is round, all transverse density functions are gaussian; twiss parameters $\alpha_x = \alpha_y$ and $\beta_x = \beta_y$ are chosen according to a Astra simulation; the emittances are chosen $\varepsilon_x = \varepsilon_y$ to obtain a normalized emittance of about 0.2 μm after A1; the chirp of A1 is chosen for an compression $C_0 = 3.5$ after bunch compressor BC0;

dispersive things and compression:

r56LH/mm=4.7 r56DOGLEG/mm=30.8 r56BC0/mm=54.2 r56BC1/mm=51.7; beam current after BC0 is 20.3A; beam current after BC1 is 162A;

resolution:

charge of macroparticles is elementary charge;

longitudinal density is uniform; length is 0.2 mm for nonperiodic or 0.1 mm for periodic simulations;

laser heater off !!!

only periodic model:

only periodic model:

	current (A)	rms noise (A)	$\sigma_{\rm E}~({\rm eV})$
before LH	5.8	0.030	560
after LH	6.0	0.063	580
before DOGLEG	6.0	0.024	1340
after DOGLEG	8.1	0.89	2530
before BC0	8.1	0.85	4060
after BC0	20.3	1.05	10350
before BC1	20.6	0.50	22170
after BC1	172	18.8	190E3

periodic model

1d particles, discrete stages (LH, DOGLEG, BCO), BW=1THz

	$aurront(\Lambda)$	rma noise (A)	$\sigma = (\alpha V)$
	current (A)	rms noise (A)	$o_{\rm E} (ev)$
before LH	5.8	0.030 0.025	560 462
after LH	6.0	$0.063^{-0.15}$	580 ⁴⁸⁴
before DOGLEG	6.0	0.024 0.09	1340 1150
after DOGLEG	8.1	0.89 3.64	2530 1640
before BC0	8.1	0.85 1.3	4060 64k
after BC0	20.3	1.05 2.0	$10350 \ {}^{150k}$
before BC1	20.6	0.50	22170
after BC1	172	18.8	190E3

1d model severely overestimates effects

XFEL with 3d periodic

Gaussian "laser heater":

April 9, 2019

beam parameters:

all beam parameters are as before with exception of the uncorrelated energy spread; start distribution with an arbitrary gaussian spread of 450 eV, 1000 eV, 1500 eV ... 6000 eV;

dispersive things and compression:

r56 values and compression as before;

resolution:

charge of macroparticles is elementary charge; the resolution to the exit of BC0 is as before ($0.1\mu m$); the longitudinal resolution from BC0 exit to BC1 exit is enhanced to $0.03\mu m$; initial period length 0.1 mm

the extra point (x) is calculated with a period length of 0.3 mm

expected slice energy spread after compression in BC2 to 5 kA

with an effective of about 14 kOhm (for the wavelength of maximal micro-bunching) the extra point (x) is calculated with a period length of 0.3 mm

yes, I did simulations to BC2 exit: inital σ_{E} =4 keV (gaussian)

an other case: initial period length might be too short!

XFEL with 3d periodic

real laser heater

April 17, 2019

beam parameters: all beam parameters are as before, initial gaussian spread of 450 eV;

LH:

matching to design optic in LH different LH working points \rightarrow same rms spread of 7 keV

dispersive things and compression:

r56 values and compression as before;

resolution:

charge of macroparticles is elementary charge; the resolution to the exit of BC0 is as before $(0.1\mu m)$; the longitudinal resolution from BC0 exit to BC1 exit is enhanced to $0.03\mu m$; initial period length 0.3 mm

working points for "5.8 A beam" \rightarrow 4 keV

0

 ΔE_{μ} [eV]

-1

-0.5

0.5

1.5

 $imes 10^4$

1

working point 2

Gaussian (0) and LH working points (1-6)

summary/conclusion

gain models:

one stage, rigid beam approximation

not applicable before BCO: beam is not rigid not applicable after BCO: non linear effects

LGM useful in linear domain; needs transverse optic for dispersive sections

simulation of real particle noise:

1d particle model

with non-linear effects without transverse optic: discrete dispersive sections to be developed: real dispersive sections with effective optic

full 3d CPU cluster: full bunch simulation; moderate resolution single PC: reduced bunch length; interference with macro effects

3d periodic

summary/conclusion

discrete model for DOGLEG is not appropriate

LH: 450 eV \rightarrow 5 keV after BC1: $\sigma_I \approx 10 \text{ A}$, $I \approx 10 \text{ A}$, $\sigma_E \approx 100 \text{ keV}$ after BC2: $\sigma_I \approx 33 \text{ A}$, $I \approx 2 \text{ kA}$, $\sigma_E \approx 2.1 \text{ MeV}$ $5 \text{ kA} \rightarrow \sigma_E \approx 5 \text{ MeV}$

need to be investigated: collimator and beam distribution system

3D periodic simulations with increased period length & more random seeds !!!

induced energy spread: linear regime + rigid beam

 $i(t,S) = \int I_0(\omega) G(\omega,S) \exp(j\omega t C(S)) d\omega$

$$E_{z}(t,S) = \int Z'(\omega,S) I_{0}(\omega) G(\omega,S) \exp(j\omega t C(S)) d\omega$$

effect of impedance after compressor, range from S_1 to S_2

$$C(S_{1} \le S < S_{2}) = C$$

$$G(\omega, S_{1} \le S < S_{2}) \approx G(\omega)$$

$$Z(\omega) = \int_{S_{1}}^{S_{2}} Z'(\omega, S) dS$$

$$\Delta E(t) = e \int I_0(\omega) \exp(j\omega tC) \int_{S_1}^{S_2} Z'(\omega, S) G(\omega, S) dS d\omega$$
$$= e \int I_0(\omega) \exp(j\omega tC) G(\omega) Z(\omega) d\omega$$

$$\Delta \boldsymbol{\mathcal{E}}_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} \left(\Delta \boldsymbol{\mathcal{E}}(t) \right)^{2} dt} \approx eC \sqrt{\frac{eI_{1}}{\pi} \int \left| \boldsymbol{Z}(\boldsymbol{\omega}) \boldsymbol{G}(\boldsymbol{\omega}) \right|^{2} d\boldsymbol{\omega}} \qquad \approx eI_{rms, \text{out}} \left| \boldsymbol{Z}_{eff} \right|$$