Analysis of Measurements of XFEL Gun

M. Dohlus 25. Sept. 2018

- what does the gun phase?
- wakes in our simulations
- Frank's measurements (13th Juli) compared to simulations
- wrong curvature
- cross-check (calibration)
- strange bunch shape
- simulations with different cathode distributions
- simulations plus artificial (inductive) wake
- time domain simulations (real Maxwell solutions)
- time domain simulation with simplified (1d) particle tracking finally

what does the gun phase?

simulated phase scan for source = 250 pC, 3 psec gun = 58 MV/m, phi solenoid = 0.221 T (optimal for phi = 216.4 deg "optimal phase") A1 = 8 x 34.0MV/m (on crest for optimal phase)

z/m

z/m

wakes in our simulations

(from the XFEL impedance data base)

25

current / A at z=3.3m

Frank's measurements (13th Juli) compared to simulations

gun=58.6 MV/m -41.5 deg								
19-47-27	"100-1"	q=100 pC	A1=138.66 M\	/ 0.47 deg	AH = 15.41 MV	-179.84 deg		
19-50-01	"100-2"		135.60	0.48	12.34	-179.81		
19-51-30	"100-3"		134.94	0.48	11.68	-179.80		
20-12-31	"250"	q=250 pC	123.25	1.00	0.01	0.0		

time scale is adjusted for 3 psec rms length of 100 pC bunches

"250" full screen, background subtracted

"250" relevant window time/length scale adjusted for 3 psec @ 100 pC energy scaling see next slide

slice energy is averaged energy per column

"250" adjustment of energy scale with 3 fit parameters: offset, scale and chirp

theoretical dispersion = 0.59 m dispersion according to fit = (0.59/1.66) m !!??

the 100 pC measurements

"100-1"

A1=138.66 MV 0.47 deg AH = 15.41 MV -179.84 deg

set additional chirp to zero adjust offset

additional chirp = zero adjust offset

wrong curvature

either the rf curvature is too strong or some wake is missing

1) rf curvature

2) wake, assumption "resistive"

$$\Delta V \approx R \times I \rightarrow R \approx \frac{14 \cdots 20 \text{kV}}{12 \text{A}} \approx 1.2 \cdots 1.7 \text{ k}\Omega$$

crosscheck: (measurement – measurement) vs. (rf-rf)

strange bunch shape

simulations with different cathode distributions

the Astra-type gun simulations have a strong low-pass characteristic

even start distribution with strong perturbation do not generate the measured profiles

???: there must be an other effect in or close to the gun; perhaps a wake that is not considered in the impedance data base

this unknown wake should enhance fast structures;

 \rightarrow try inductive wake direct after the gun cavity

simulations plus artificial (inductive) wake

2

3

129.2

129.1 ^L -3

-2

-1

0

1

less wake or an initial distribution with smaller perturbation could produce the measured shape

the effect of wakefields in the gun might be stronger

time domain simulation of an accelerated bunch

simplified stimulation: $\mathbf{J}(\mathbf{r},t) = e_z \eta(r) i(t-t_z(z))$

with
$$\gamma(z) = 1 + \frac{qE_0}{m_0c^2} z \rightarrow v(z) \rightarrow t_z(z)$$

example 1: $\sigma_t = 6.7 \text{ psec}$ $r_b = 0.5 \text{ mm}$ pencil beam E = 51.1 MV/m external field is constant (in time and space)

ct=0.01 $r \partial_t B_{\phi}$

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.02

0.015

0.01

0.005

0.02

0.015

0.01

0.005

0.05

0.04

0.03

0.02

0.01

ct=0.07 $r\partial_t B_{\phi}$

0.03

0.02

0.01

0

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

time domain simulation with simplified (1d) particle tracking

simplified stimulation: $\mathbf{J}(\mathbf{r},t) = e_z \eta(r) i(z,t)$

 $\eta(r) \text{ pencil beam with } r_b = 0.5 \text{ mm}$ $i(z,t) \text{ from particle tracking } \{z_v, p_{zv}\}$ $E_z^{(\text{eff})}(z,t) = \int E_z(r,z,t)\eta(r)2\pi r dr + E_z^{(\text{ext})}(z,t)$ $E_z^{(\text{ext})}(z,t) = E_0 \cos(\omega t + \varphi)\cos(kz) \text{ in the cavity } (58\text{MV/m}, 216.4 \text{ deg})$

. . .

1d particle tracking: $z_{\nu} + v(p_{z\nu})\delta t \rightarrow z_{\nu}$ $p_{z\nu} + qE_{z}^{(\text{eff})}(z_{\nu}) \rightarrow p_{z\nu}$ $z_{\nu} + v(p_{z\nu})\delta t \rightarrow z_{\nu}$

start distribution:

250 pC, 3 psec, 2E6 particles

... is too weak

simulation for shape 3:

the fast structure is suppressed as before

finally

measurements after TDSA:

screen pictures \rightarrow averaged slice energy calibration of time axis: "3 psec assumption" calibration of energy axis: fit to simulation (250pC, AH off) \rightarrow deviation from theoretical dispersion by factor 1.7

simulations: gun with Astra or Krack3 (usually without wakes) from ~3.2m with Xtrack , discrete wakes from impedance date base Maxwell time-domain simulations \rightarrow acceleration wake (weak) reflections from boundary \rightarrow "gun cavity wake"

impedance data base incomplete: no elements from 0 to 3 m

not understood:	bunch shape curvature of phase space	unknown cathode effects strange longitudinal laser profile additional wakes (strong resistive)	
		calibration error calculation of energy per slice rf error unknown wake (strong inductive)	

