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Motivation

* Make sure we reach best FEL performance by comparing real
performance to simulations and tuning to design parameters

* Simulations of statistical processes (like SASE) become less feasible with increasing
accuracy. E.g. 1sec of XFEL operation (27000 runs) would need 100 days on a 1000 core
cluster with reasonable accuracy and would add 10KEur to electricity bill

* Current procedure of tuning SASE at FLASH is lengthy and manual and would cost lots of
money if extrapolated to XFEL.EU

e Self-driving cars and self-focusing cameras are around, so self-tuning light sources are
clearly within reach

* Investing into advanced on-line optimization and tuning methods

* Name statistical optimization in analogy with statistical learning, i.e. when paramets

or models are not known exactly

* First developments have been ongoing since early 2015 focusing on FLASH
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Approaches

* In principle, with perfect diagnostics, applying alignment and optics corrections etc.,
should do the job

* This is however not the case in reality

* Instead, mimic what an operator is doing (tuning optics knobs and looking at SASE level),
but using more advanced algorithms

* The problem is multidimensional and response functions to optics elements (e.g.
steerers) may be bad. Linear theory is not applicable and nonlinear optimization may
encounter local maxima.

* Strategy: split into sequences such as {V14, V7, H10,H12} ->

{Q13SMATCH, Q14SMATCH, Q15SMATCH} ->

{FODO QUADS} -> {intra-undulator orb. correctors} -> {RF phases and Voltages ACC23}

* Within each block apply a nonlinear optimization method (simplex) or a simple scan

* Find best possible sequence

» All optimization steps are subject to additional beam loss constraints (penalty between
0.0 and 0.7 alarm, forbidden to go above 0.7, where 0.7 is not a fixed number)



FEL optimization at FLASH

* Automatically adjusting transverse optics (launch steerers, intra-undulator steerers,
matching quads, FODO strength) based on photon diagnostics (GMD, MCP, Spectrometer)

e Adjusting compression level using knobs for phases and voltages in BC modules

* It works (I. Agapov et al., proc. IPAC 2015 )

* Tuning strategies adjustable and in principle self-learning (ongoing R&D, first in simulation)
e Python code, part of OCELOT, based on python DOOCS binding
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FLASH OCELOT model 4-corrector tuning, 13nm, 4-corrector + und. steerer
(used in tuning strategy simulator) FLASH1 + matching quad + FODO quad

tuning, 17nm, FLASH1
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Tapering

e At XFEL.EU one could increase the peak power and spectral density up to 10 times
for both hard and soft x-rays by reducing the K starting around saturation point (tapering)
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* Undulator gap opening takes time, need to be efficient in tuning
* Possible procedure in operation: determine saturation and scan a parametric knob
* Gain curve and saturation length measurement procedure done at FLASH

» Contrary to expectations, spectral

- width diagnostics at FLASH1 is a
. « FLASH2 MCP poor indication of saturation
10 10°? :6| 1 In] == m:?t“:‘nm E——
w FLASH1 GMD | | = F WW :
10! < :; q ,Anw.u " w‘\m T e l ;
rust on’tArust S Aund .
1053 05 10 15 2.0 25 3.0 35 20 Loy 6 7 B 9 10 11 12 13 14 )Efi LI n /g ", .‘"‘ “‘ 5
N |2 P




Tapering optimization procedure

Procedure 1

e Close undulator n

e Close undulator n+1

* Fine-tune K(n+1) and phase shifter between two undulators for max power
* etc.

* From simulations, this does not lead to optimal tapering

Procedure 2

e Determine saturation length

* Apply tapering knob (quadratic or exponential)

* While applying tapering knob, keep orbit constant

* If necessary, fine-tune phase shifters (need almost perfect phase shifter vs. K

settings)
2 K(T’I) = KU, n <mHgp
K(n) = Koi + aoi(n — n;) + ayi(n —n;)°, 1 <n < K(n) =K +ag(n — )™, 1> ny
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Issues at FLASH

Following improvements are desirable:

* Diagnostic is important (e.g. at FLASH: BPM alignment wrt. undulator

magnetic center probably worse than 1mm; xuv spectrometer often off-line;

e-beam length measurement calibration unknown (to me); photon pulse energy measurement
ok but some detector calibrations unknown; non-destructive e-beam size diagnostics

would be great)

» Starting with well-matched orbit and optics makes convergence fast:

Matching optics, closing dispersion etc. as the first step is essential

* Optics matching in linac turns out to be important (especially in BC) to minimize emittance
degradation (see e.g. Di Mitri and Cornacchia, NIM A 735 (2014) 60-65)

* Machine stability has to be reasonable to start with (especially bad for sflash due to laser).
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Issues at FLASH (contd.)
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Next steps

* End prototyping, software to be deployed at FLASH by end 2015

* A little bit more testing with beam

* Focus on efficiency:
e XFEL has more components and some approaches may prove slow.
Flight simulator is used to study tuning strategies.
* Tuning strategies can be subject to evolutionary methods (simple example: randomly
try different sequences such as {rf, orbit, fodo}, {rf, orbit, rf, fodo}, etc. ) and eliminate
those with poor performance
* More advanced statistical and machine learning methods are under study.
For example, Bayesian methods to deal with ill-posedness of finding the best correction
or a source of error with limited diagnostics. Feasibility tbc.



