

Parallel operation of SASE1 and SASE3

Artsrun Sargsyan, Vahe Sahakyan

DESY – Beam Dynamic Meeting 10 August 2015

Contents

> Introduction

- Conversion scripts
- Numerical simulations
 - 17,5 GeV beam energy
 - 14 GeV beam energy
- > Next steps

Introduction

<u>Goal:</u> To achieve parallel operation of SASE1 and SASE3.

Considered cases

Beam energy (GeV)	SASE1 λ(nm)	SASE3 λ(nm)
17.5	0.1	0.4
14	0.23	0.4

Conversion scripts

- 1. astra2elegant (MATLAB script)
- 2. elegant2genesis (SDDS ToolKit)
- 3. genesis2elegant (MATLAB script)
- 4. elegant2genesis

Conversion scripts

1. <u>astra2elegant</u>

ASTRA beam file (x, y, z, px, py, pz,)

2. <u>elegant2genesis</u>

This program is a part of SDDS ToolKit

3. genesis2elegant

ELEGANT beam file (x, x', y, y', t, γ,)

 I_i -current of i-th slice

 $I_{\rm max}$ -max. current

Numerical simulations

Kick by <u>KFBX.1893.TL</u> fast kicker and correction by <u>CEX.2795.T4</u> and <u>CEX.2799.T4</u> correctors

Beam centroid for 17,5 GeV case when kick is equal to 4 μ rad

Considered cases for kick values

17,5 GeV

- 2 µrad kick
- 4 µrad kick
- 6 µrad kick

- 14 GeV
 - 4 µrad kick
 - 6 µrad kick
 - 8 µrad kick

Max. traj. deviation	500 μ m
Corrector max. kick	20 µrad

ASTRA beam before TL section

Rad. energy along SASE1 (0,1 nm)

Energy spread after SASE1

Energy spread after SASE1 for 6 μrad kick

Rel. changes of sat. length and rad. energy at sat.

Kick value	L _{sat}	E _{sat}
No kick	1	1
2 µrad	1,75	0,43
4 µrad	-	-
6 µrad	-	-

Numerical simulations (E=17,5 GeV, Q=1nC)

10 1 0.1 Rad. Energy (mJ) 0.01 0.001 0.0001 SASE1 OFF 6 urad kick 0.00001 4 urad kick 2 urad kick 0.000001 No kick 0.0000001 60 20 40 80 100 120 140 0 z (m)

Rad. energy along SASE3 (0,4 nm)

Rel. changes of sat. length and rad. energy at sat.

Kick value	L _{sat}	E _{sat}
SASE1 OFF	1	1
6 μrad	1,02	0,95
4 μrad	1,04	0,91
2 µrad	1,12	0,7
No kick	-	-

ASTRA beam before TL section

Rad. energy along SASE1 (0,23 nm)

Energy spread after SASE1

Beam centroid along SASE1 for 4μ rad kick

Rel. changes of sat. length and rad. energy at sat.

Kick value	L _{sat}	E _{sat}
No kick	1	1
4 μ rad	1,95	0,35
6 µrad	-	-
8 µrad	-	-

Numerical simulations (E=14 GeV, Q=1nC)

Rad. energy along SASE3 (0,4 nm)

Rel. changes of sat. length and rad. energy at sat.

Kick value	L _{sat}	E _{sat}
SASE1 OFF	1	1
8 µrad	1,02	0,78
6 μrad	1,12	0,5
4 μrad	1,14	0,23
No kick	-	-

Next steps

• Study the case when:

• Study the impact of the kick position (different betatron phases at the entrance of SASE1)

THANK YOU FOR ATTENTION