Cavity Field Maps (TESLA \& $3^{\text {rd }}$ Harmonic Cavity)

Undulator Wakes

Estimation of CSR Effects for FLASH2HGHG

Cavity Field Maps (TESLA \& $3^{\text {rd }}$ Harmonic Cavity)

3D field map files for ASTRA in E3D format
files are available on home page
of $\leftarrow \Rightarrow$ www.desy.de/xfel-beam/s2e/codes.html

Tools

- 3rd harmonic field maps (ackermann@temf.tu-darmstadt.de \& Martin.Dohlus@desy.de)
- TESLA field maps (ackermann@temf.tu-darmstadt.de \& Martin.Dohlus@desy.de)

TESLA field maps
more info (= discrete coupler kicks) in:
\& $\leftarrow \rightarrow$ mw.des.de/xel-beam/talks.htm|Fz2014.07.09
2014.07.09

- Dohlus,Martin: High-Precision Field-Maps of TESLA Cavity: Coupler Kicks (PDF)
$3^{\text {rd }}$ harmonic cavity
new calculations from E. Gjonai (DG, $2^{\text {nd }}$ and $3^{\text {rd }}$ order)
http://www.desy.de/fel-beam/s2e/data/Harmonic3/CK39.pptx
orientation:

origin: in the middle of cell 5 (= middle of cavity)
files:

$2^{\text {nd }}$ order, orientation 1
$3^{\text {rd }}$ order
E3D_3_9GHz-2order_yrot.dat
$2^{\text {nd }}$ order, orientation 2
E3D_3_9GHz-3order_yrot.dat $3^{\text {rd }}$ order

discrete coupler kicks: see document

Undulator Wakes

matlab function for longitudinal wake of undulator

```
function [ Kern ] = kern_undulator( xy_param,z_param,du,nu1,nu2,gamma,lambda_u,K )
```

calculates kernel function for undulator trajectory for finite and infinite undulator, local or periode-averaged (only for infinite undulator), 1d beam or cross-section averaged, on axis or offset (for 1d beam)
"space charge" contribution is excluded by approach as for all 1d CSR models: rigid bunch approximation !!!
it calculates wake kernel for longitudinal field: $\mathbf{E}(($ test-length $) \rightarrow$ test $) \cdot \mathbf{e}($ test $)$
period averaged: $\langle\mathbf{E}((\text { test -length }) \rightarrow \text { test }) \cdot \mathbf{e}(\text { test })\rangle_{\text {test }}$

$$
\left\langle\mathbf{E}((\text { test -length }) \rightarrow \text { test }) \cdot \mathbf{e}_{z}\right\rangle_{\text {test }} \equiv 0 \quad!!!
$$

it is essentially tail \rightarrow head interaction
but: for 3d and/or offset, there is a head \rightarrow tail contribution
files and docu:
$\frac{\text { http://www.desy.de/~dohlus/UWake/ }}{\downarrow}$
undulator_docu.ppt (definition, docu \& examples) Two Methods for the Calculation of CSR Fields (TESLA-FEL-2003-05)

```
kern_undulator.m Matlab
example1.m example
conv_fft.m convolution
```

example:
bunch 1:
$\lambda(s)=\frac{q}{\sqrt{2 \pi} \sigma_{s}} \exp \left(-\frac{1}{2}\left(\frac{s}{\sigma_{s}}\right)^{2}\right)$ $q=0.5 \mathrm{nC}$
$\frac{c q}{\sqrt{2 \pi} \sigma_{s}}=2 \mathrm{kA}$
bunch 2:
$\lambda(s)=\frac{q}{\sqrt{2 \pi} \sigma_{s}} \exp \left(-\frac{1}{2}\left(\frac{s}{\sigma_{s}}\right)^{2}\right)(1+m \cos (k s))$
$q=0.1 \mathrm{nC} \quad m=0.02 \quad k=2 \pi(800 \mathrm{~nm})$
$\frac{c q}{\sqrt{2 \pi} \sigma_{s}}=2 \mathrm{kA}$

FLASH, SEEDING undulator

infinite undulator, periodic wake, Nav= 250
$\gamma=500 \mathrm{MeV} / m_{o} c^{2}$
$\lambda_{u}=3.15 \mathrm{~cm}$
$K=2.83$
bunch $2(0.1 \mathrm{nC}$, modulated), $\mathrm{du}=0.040 \mu \mathrm{~m}$

bunch $2(0.1 \mathrm{nC}$, modulated), $\mathrm{du}=0.080 \mu \mathrm{~m}$, Nsigma $=4$, $\mathrm{Nstep}=25$

bunch $2(0.1 \mathrm{nC}$, modulated), du $=0.080 \mu \mathrm{~m}$, ($\mathrm{Nsigma}=3$, $\mathrm{Nstep}=13$)

Estimation of CSR Effects for FLASH2HGHG

beam: energy $\sim 1 \mathrm{GeV}$
current ~ 1 kA
slice energy spread $\sim 0.15 \mathrm{MeV}$
modulation wavelength ~ 266 nm
modulation amplitude $\sim 0.75 \mathrm{MeV}$
sigma_x (before chicane) ~ 110 um
norm. hor. slice emittance ~ 0.6 um
norm. vert. slice emittance ~ 0.7 um
chicane: magnet length $=0.1 \mathrm{~m}$
drift length $=0.5 \mathrm{~m}$
middle drift $=0.2 \mathrm{~m}$
curvature radius (in magnets) ~ 14.5 m R56 ~ 53 um

some estimations:

charge in one wavelength $q_{\lambda}=I \frac{\lambda}{c} \approx 0.89 \mathrm{pC}$
half of that charge can be compressed $\quad q=q_{\lambda} / 2$
rms length after ideal compression $\sigma=r_{56} \sigma_{\mathcal{E}} / \mathcal{E} \approx 8 \mathrm{~nm}^{(1)}$

current spikes $\hat{I}=\frac{c q}{\sqrt{2 \pi} \sigma} \approx 6.7 \mathrm{kA}^{(3)}$

$$
\sqrt[3]{3} \cdot(2 \cdot \pi)^{\overline{2}} R^{\overline{3}} \cdot \sigma^{\overline{3}}
$$

rms length with smearing $\quad \sigma=\sqrt{\left(r_{56} \sigma_{\mathcal{E}} / \mathcal{E}\right)^{2}+r_{51}^{2} \sigma_{x}^{2}+2 r_{51} r_{52}\left\langle x x^{\prime}\right\rangle++r_{52}^{2} \sigma_{x^{\prime}}^{2}}$

$$
\begin{equation*}
\approx \sqrt{\left(r_{56} \sigma_{\mathcal{\varepsilon}} / \mathcal{E}\right)^{2}+(z / R)^{2} \sigma_{x}^{2}} \tag{2}
\end{equation*}
$$

(1) \rightarrow required resolution
(2) \rightarrow required step width $\Delta \sigma \ll \sigma(0)$
(3) rough estimation

"steady state csr"

integrated "steady state csr"

CSRtrack simulation:

$$
\begin{array}{ll}
\text { required resolution } \sim 7 \mathrm{~nm} & \ll \sigma_{\text {min }}=r_{56} \sigma_{\mathcal{E}} / \mathcal{E} \\
\text { required step width } \sim 0.3 \mathrm{~mm} & \ll R_{\text {magnet }} \sigma_{\text {min }} / \sigma_{x}
\end{array}
$$

simulation of a short sub-range length = 16 um
1E6 particles
gaussian profile with $6 \sigma=16$ um
without self effects

$\mathcal{E} \lambda /\left(2 r_{56}\right) \approx 2.5 \mathrm{MeV}$
slice ~ 5 wavelength
norm. hor. slice emittance $=0.604$ um norm. vert. slice emittance $=0.706 \mathrm{um}$
with self effects

$\mathcal{E} \lambda /\left(2 r_{56}\right) \approx 2.5 \mathrm{MeV}$

slice ~ 5 wavelength
norm. hor. slice emittance $=0.605$ um norm. vert. slice emittance $=0.706 \mathrm{um}$

