FLASH II Seeding History and Future

Kirsten Hacker April 2014

Timeline

- 2011
 - HHG is planned by Tavella & co.
 - HGHG is studied by Ati Mesek (HZB) but energy spread was unrealistic
 - EEHG is studied by SINAP (http://arxiv.org/ftp/arxiv/papers/1103/1103.0112.pdf)
 - I noticed that we could do EEHG in sFLASH, wrote a report on the tolerances, and designed and built the chicane and injection beamline (TESLA FEL reports 2011)
- 2012
 - HHG has trouble demonstrating concept, simulations from Gianessi show that they are on the edge of being able to see anything
 - HGHG/EEHG beamline is commissioned
- 2013
 - HHG demonstrates concept with unacceptable contrast, factor of 10-100 increase in seed power is required
 - HHG gets all of the beamtime, HGHG/EEHG gets very little
 - Directorate requests HGHG design for FLASHII and V. Miltchev makes initial study with a recommendation to put the modulator in the middle of the radiator
 - I decided that the >30 nm performance of HGHG will not be sufficient and write a TESLA FEL report on a more flexible design that has the capability to do research towards the shortest wavelengths.
 - I did 1-D simulations of the effects of LSC on seeded beams
- 2014
 - Martin did 3-D simulations of the effects of LSC on seeded beams and they agree with my previous 1-D results except for the 3-D effects
 - HGHG/EEHG gets beamtime this year
 - Self-seeding gets a closer look

FLASH II Decision Points

- Where to put the HGHG modulator
 - Before the radiator or in the middle of the radiator
- Whether to save space for EEHG modulator and chicane
- Where to put the mid-radiator chicane
 - Should be compatible with self-seeding

Basic Layout

Assumption: energy modulated beam cannot be transported over 20 meters

Assumption: the 20 meters is no problem if the beam radius is large (no LSC)

HGHG limit at FLASH2

HGHG limit at FLASH2

CSR and LSC

4 MeV microbunch after 4 meters

100 μ m (rms) beam radius 1kA initial peak current R₅₆ of chicane = 45 μ m 700 MeV beam energy

Only small degradation in bunching But – energy spread is too big

CSR and LSC

2MeV microbunch after 4 meters

CSR and LSC 2MeV microbunch after 4 meters

100 μ m (rms) beam radius 1kA initial peak current R₅₆ of chicane = 45 μ m 700 MeV beam energy

$$Z_{LSC}(k) = \frac{iZ_0}{\pi k r_b^2} \left[1 - \frac{kr_b}{\gamma} K\left(\frac{kr_b}{\gamma}\right) \right]$$

FLASH2 beamline

Caveats:

- 1). The saturation point has to be at a fixed position in the undulator
- 2). For long wavelengths, the saturation point has to be at the end
- 3). Transport the bunched or modulated beam over 30 m
- 4). Quad misalignments
- 5). Everything not yet considered.

Dispersion in 30 meter Drift

- $R_{56} \sim L_{drift} / \gamma^2 = 15 \ \mu m @ 700 \ MeV$
- $R_{56} \sim L_{drift} * \theta^2 < 3 \text{ nm} \sim \text{worst case } 100 \,\mu\text{m}$

Dispersion required to bunch seeded microbunch is: 20 µm for too-large 4 MeV modulation 50 µm for smaller 2 MeV modulation >50 µm for smaller modulations

LSC over 20 meters

$$Z_{LSC}(k) = \frac{iZ_0}{\pi k r_b^2} \left[1 - \frac{kr_b}{\gamma} K \left(\frac{kr_b}{\gamma} \right) \right]$$

100 µm (rms) beam radius

Increase beam diameter to remove LSC problem

Bonus: no CSR because beam was compressed in drift

EEHG seeding

Echo Enabled Harmonic Generation

EEHG limit at FLASH2

EEHG doesn't tolerate LSC

EEHG tolerates CSR

Cascaded seeding at FLASH2

Seeding performance 150 keV energy spread

Seeding performance 150 keV energy spread

Self-seeding (chat with Serkez)

- Success at LCLS with 700 and 1000 eV beams
- <250 eV at FLASH is more challenging because the grating absorbs more energy, making the signal to noise ratio worse
- G-SOLVER is the code required to calculate the grating performance

Combined vs. Dedicated Design

SELF-SEEDING SETUP DESCRIPTION

Figure 1: Design of the SASE3 undulator system for TW mode of operation in the soft X-ray range.

Figure 2: Layout of the SASE3 self-seeding system, to be located in the space freed after removing the undulator segment U5. The compact grating monochromator design relies on a scheme originally proposed at SLAC. G is a toroidal VLS grating. M1 is a rotating plane mirror, M2 is a tangential cylindrical mirror, M3 is a plane mirror used to steer the beam. The deflection of both electron and photon beams is in the horizontal direction.

ISBN 978-3-95450-126-7

6 meter chicane vs. 3 meter chicane

Steeper angles => more losses

Figure 8: First order efficiency of the blazed groove profile Here the groove density is 1100 lines/mm, Pt coating is assumed, at an incidence angle of 1° . The blaze angle is 1.2° ; the anti-blaze angle is 90° .

Advantages of external seeding:

- Tunability
- Synchronization with pump-probe laser
- Frequency combs (B. McNeil)

Slippage smears this out But for a short radiator, it might be preserved

FLASH II Simulation Goals

- Roadmap to present at the end of the summer
 - HGHG is not enough to seed short λ <30 nm
 - Show long-term goals to reach short $\boldsymbol{\lambda}$
- MAC in November
- **Decision**: external seeding or self-seeding
 - Or both with SASE killer as alternative to slotted foil

FLASH II Simulation Tactics

Kirsten Hacker

E-B particle tracker slippage

- Full E-B field from Amnon Yariv: "Optical Electronics in Modern Communications", p.66
- Predicts about the same thing as GENESIS and Rosenzweig formula used in Stupakov, Huang papers

Chirp reduces energy transfer

4 GW, 1 mm (FWHM) 6 period ORS undulator

80 nm ~ 0.26 fs/40 fs @ 800 nm