

Low Beam Energy Spread for FLASHII HGHG Option

Guangyao Feng S2E Meeting, DESY 25.11.2013

The plan for this month

- Low energy spread for FLASHII HGHG option (100%)
- 2. particle distributions of FLASH for Johann
 Zemella for special purpose of plasma study.
 (100%)
- 3. The internal report for EXFEL simulations (~100%)

Requirements:

- The global slice length: ~15 um slice = 50 fs Maximal energy chirp (correlated energy spread) along the global slice ~150 keV
- 2) Min current along the global slice: Should exceed at least 0.5 kA
- 3) Maximal local slice emittance along the global slice?: 1.5 um
- 4) Maximal local (uncorrelated) energy spread: ~100 keV

RF settings in accelerating modules for CASE1 (1.0nC)								
Charge nC	Vacc1 [*] [MV]	φacc1 [deg]	Vacc39 [MV]	φacc39 [deg]	Vacc2,3 [MV]	$\Phi_{acc2,3}$ [deg]	Vacc4,5,67 [MV]	Φacc4,5,6,7 [deg]
1.0	160.4	-3.2	21.9	153.4	337.3	25.0	550.0	0.0

RF settings in accelerating modules for **CASE2** (1.0nC)

Charge	Vacc1 [*]	φacc1	Vacc39	φ _{acc39}	Vacc2,3	$\Phi_{acc2,3}$ [deg]	Vacc4,5,67	Φacc4,5,6,7
nC	[MV]	[deg]	[MV]	[deg]	[MV]		[MV]	[deg]
1.0	143.33	-5.1	20.63	149.4	337.3	25.0	550.0	0.0

Conclusion:

1. Higher energy gradient in the first cavity of ACC1 may lead to a transverse over focusing on the beam bunch. The stronger space charge force will make the slice energy spread and transverse emittance become larger.

2. When keeping V1-4=V5-8 in ACC1, it is not easy to make a significant improvement to get the low slice energy spread by optimizing the RF parameters of ACC1 and ACC39 in a reasonable region.

3. A proper voltage distribution (V1-4:V5-8) in ACC1 may bring two advantages:

(1) Lower energy gradient in the first cavity of ACC1 to avoid transverse over focusing.(2) High beam energy gain after ACC1 to reduce the space charge effects.

Conditions for new calculation:

- 1. Keeping the same accelerating gradient for each cavity of ACC1.
- 2. Low energy spread calculation with low longitudinal compression in BC3 (Low peak current)

Parameter settings for the bunch compressors

Charge Q, nC	Curvature radius in BC ₂	Momentum compaction factor in BC _{2,}	compr. In BC2	Curvature radius in BC ₃	Momentum compaction factor in BC_{3}	Total compr. C
	r1 [m]	R _{56,2} [mm]		r2 [m]	$R_{56,3}$ [mm]	
1.0	1.618	180.7	2.7	5.55	90.5	15
0.5	1.618	180.7	4.7	6.25	71.2	47
0.25	1.618	180.7	6.4	6.85	59.2	77.5
0.10	1.618	180.7	11.7	8.55	37.9	120

E1=145.5MeV, E2=450MeV

Curvature radius in BCs#

$$1.4 \le \frac{r_1}{m} \le 1.93$$
 $5.3 \le \frac{r_2}{m} \le 16.8$

RF settings in accelerating modules for different bunch charge cases

Charge nC	Vacc1 [*] [MV]	φ _{acc1} [deg]	Vacc39 [MV]	φ _{acc39} [deg]	Vacc2,3 [MV]	$\Phi_{acc2,3}$ [deg]	Vacc4,5,67 [MV]	Φacc4,5,6,7 [deg]
1.0	160.4	-3.2	21.9	153.4	323.3	19.0	623.0	-28.0
0.50	159.5	2.4	19.8	162.6	323.3	19.0	623.0	-28.0
0.25	159.9	1.9	20.5	160.5	323.3	19.0	623.0	-28.0
0.10	160.0	-1.0	21.9	152.6	323.3	19.0	623.0	-28.0

* Same voltage amplitude has been used for each cavity of ACC1

RF power restrictions:

Maximum energy gain for accelerating modules

ACC1	165 MeV
ACC39	22 MeV
ACC2/3	345 MeV
ACC4/5	320 MeV
ACC6/7	430 MeV

ASTRA (tracking with space charge effects, **3D** calculation)

CSRtrack (tracking with CSR effects)

W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003)

W3 - ACC39 wake (TESLA Report 2004-01, DESY, 2004)

TM - transverse matching to the design optics

Current profile along the beam line

Longitudinal phase space along the beam line

Current profile along the beam line

Longitudinal phase space along the beam line

slice length

Slice energy spread distribution (uncorrelated)

Current profile along the beam line

Longitudinal phase space along the beam line

Slice energy spread distribution (uncorrelated)

Current profile along the beam line

Longitudinal phase space along the beam line

Slice energy spread distribution (uncorrelated)

