

Astra-3D Simulations and Low Slice Energy Spread study for FLASHII

Guangyao Feng S2E Meeting, 28.10.2013 MPY, DESY

The plan for this month

- 1. Astra-3D simulations for FLASHII for different bunch charge cases (100%)
- 2. SASE FEL calculations for FLASHII (100%)
- 3. Low slice energy spread study for FLASHII HGHG option (60%)
- 4. SASE FEL calculations for EXFEL SASE1 for different bunch charge cases(100%)
- 5. The internal report for EXFEL simulations (95%)

Low slice energy spread study for FLASHII (70%)

S2e simulation for Q=1.0nC

Parameters for the bunch compressors

Charge O.	Curvature radius in	Momentum compaction	compr. In	Curvature radius in	Momentum compaction	Total compr.
nC	BC ₂ r1 [m]	factor in $BC_{2,}$ $R_{56,2}$ [mm]	BC2	BC ₃ r2 [m]	factor in BC_{3} R _{56,3} [mm]	C
1.0	1.618	180.7	2.7	5.770	83.6	50

E1=145.5MeV, E2=450MeV

Curvature radius in BCs[#] $1.4 \le \frac{r_1}{m} \le 1.93$ $5.3 \le \frac{r_2}{m} \le 16.8$ Exciting current* **I**BC2~70.93A **I**BC3 <62.00A

Low slice energy spread study for FLASHII

RF settings in accelerating modules for 1nC

Charge	Vacc1 [*]	φacc1	Vacc39	φacc39	Vacc2,3	Φacc2,3	Vacc4,5,67	Φacc4,5,6,7
nC	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]
1.0	160.4	-3.2	21.9	153.4	337.3	25.0	550.0	0.0

Low Energy Spread for FLASH 2

The voltage distribution in ACC1 will affect the slice energy spread of the bunch.

* Igor Zagorodnov, Beam Dynamics simulation at DESY, Collaboration meeting at PAL, 2013

Low slice energy spread study for FLASHII

New parameter settings are based on:

- (1) After ACC39 E=130 MeV(2) In ACC1, V₁₋₄:V₅₋₈=2:3 Case2
- as a comparison of case1: E=145.5MeV, V₁₋₄:V₅₋₈=1:1
- * The parameters for bunch compressors have been fixed for both of the two cases.

Low slice energy spread study for FLASHII

RF settings in accelerating modules for case2

Charge	Vacc1 [*]	φ _{ace1}	Vacc39	φ _{acc39}	Vacc2,3	$\Phi_{acc2,3}$ [deg]	Vacc4,5,67	Φacc4,5,6,7
nC	[MV]	[deg]	[MV]	[deg]	[MV]		[MV]	[deg]
1.0	143.33	-5.1	20.63	149.4	337.3	25.0	550.0	0.0

Transfer matrix of standing wave cavity

$$M_{\text{cavity}} = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$
$$= \begin{pmatrix} \cos(\alpha) - \sqrt{2} \cos(\Delta \emptyset) \sin(\alpha) & \sqrt{8} \frac{\gamma_i}{\gamma'} \cos(\Delta \emptyset) \sin(\alpha) \\ -\frac{\gamma'}{\gamma_f} \left[\frac{\cos(\Delta \emptyset)}{\sqrt{2}} + \frac{1}{\sqrt{8} \cos(\Delta \emptyset)} \right] \sin(\alpha) & \frac{\gamma_i}{\gamma_f} \left[\cos(\alpha) + \sqrt{2} \cos(\Delta \emptyset) \sin(\alpha) \right] \end{pmatrix}$$

Space charge force after the first 4 cavities of ACC1

Calculation for other cases (1nC)

Restrictions :

- (1) Keeping V1-4=V5-8 for ACC1.
- (2) RF parameters of ACC1 and ACC39 should be optimized at the same time to keep the linear energy distribution after ACC39.
- (3) Same gun model has been used.
- (4) Beam energy after ACC3: 450MeV.
- (5) RF power restrictions for accelerating modules.

RF Parameter Settings for ACC1 and ACC39

V1-4=V5-8 for ACC1

	Beam energy after ACC39	Vacci [MV]	фассі [deg]	Vacc39 [MV]	фассзя [deg]
Case1*	145 MeV	160.39	-3.161	22.00	153.34
Case2*	140 MeV	154.87	-3.911	21.59	151.77
Case3*	135 MeV	149.30	-4.342	21.04	150.92
Case4*	130 MeV	143.74	-4.806	20.49	150.01
Case5*	125 MeV	138.18	-5.306	19.94	149.07
Case6*	120 MeV	132.64	-5.847	19.40	148.06

Fire	First cavity of ACC1 V ₁₋₄ =V ₅₋₈ for ACC1				ACC1			Transvers	e focusing
	Beam energy after ACC39	L _{Cavity} [m]	ΔØ [°]	Υi	γ_f	γ′ [1/m]	α	<i>m</i> ₂₁ [1/m]	
Case1*	145 MeV	1.3757	-3.161	9.80626	48.9971	28.4879	0.5696	-0.33243	
Case2*	140 MeV	1.3757	-3.911	9.80626	47.6272	27.4921	0.5596	-0.32476	
Case3*	135 MeV	1.3757	-4.342	9.80626	46.2329	26.4786	0.5491	-0.316734	
Case4*	130 MeV	1.3757	-4.806	9.80626	44.863	25.4828	0.5384	-0.308578	
Case5*	125 MeV	1.3757	-5.306	9.80626	43.4932	24.4871	0.5274	-0.300142	
Case6*	120 MeV	1.3757	-5.847	9.80626	42.0988	23.4736	0.5159	-0.291253	

Comparing with Case2:

First cavity of ACC1

V1-4:V5-8 =2:3 for ACC1

Beam energy after ACC39	<i>L_{Cavity}</i> [m]	ΔØ [°]	Υı	γ_f	γ′ [1/m]	α	<i>m</i> ₂₁ [1/m]
130 MeV	1.3757	5.11289	9.80626	37.7417	20.3063	0.478403	-0.262368

Parameters in ACC1 (Astra simulation including space charge effects)

Achieved progress

2. Astra-3D simulations for FLASHII for different bunch charge cases (100%)

Beam parameters from beam dynamics simulations

Parameter	Unit					
Bunch charge	nC	1	0.5	0.25	0.1	0.02
Peak current (gun)	A	50	26	15.5	7.8	2.05
Bunch length (gun, FWHM)	ps	21	20.2	16.7	13.1	9.38
Projected emittance (gun)	μm	2.6	1.3	0.93	0.59	0.29
Compression		49	96	160	333	1049
Peak current	kA	2.46	2.5	2.48	~2.6	2.15
Bunch length (FWHM)	fs	422	179	70.2	44	2.0
Projected emittance	μm	3.08	1.38	0.78	2.18	0.76

Astra-3D simulations for FLASHII

Achieved progress

3. SASE FEL calculations for FLASHII (100%)

Slice parameters are extracted from s2e simulations for SASE simulation

 $\gamma \quad \Delta \gamma \quad \varepsilon_x \quad \varepsilon_y \quad \beta_x \quad \beta_y \quad \langle x \rangle \quad \langle y \rangle \quad \langle x' \rangle \quad \langle y' \rangle \quad \alpha_x \quad \alpha_y \quad I$

λu=31.4mm, K=1.87

* The magnet description file for the undulator system comes from Matthias Scholz.

Achieved progress

4. SASE FEL calculations for EXFEL SASE1 for different bunch charge cases(100%)

λu=40.0mm, K=2.13676

10 random seeds for each bunch charge case

Bunch charge, nC	1.0	0.5	0.25	0.1	0.02		
Wavelength, nm	~0.1nm						
Beam energy, GeV	~17.5						
Peak current, kA	~5.0						
Saturation length, m	110	88	80	75	62		
Mean radiation energy							
in the pulse, mJ	4.5	3.98	2.27	0.94	0.26		
Averaged peak power,							
GW	41.1	55.4	69.2	80.4	110.2		

The plan for next month

- 1. The internal report for EXFEL simulations. (100%)
- Optimization for FLASHII HGHG operation mode. (30%)
- 3. Preparing particle distributions of FLASH for Johann Zemella for special purpose of plasma study. (100%)