
Astra preprocessor

In principle it is possible to simulate a

complete bunch compression system with

cavities, coupler kicks, bunch compressors,

wakes and CSR effects in Astra.

But not in a single run!

Astra executable and input

required: sddsload

run MAIN.m

>> MAIN
C1.ACC1 RFCA 2.9961
C2.ACC1 RFCA 4.3809
C3.ACC1 RFCA 5.7657
C4.ACC1 RFCA 7.1505
C5.ACC1 RFCA 8.5353
C6.ACC1 RFCA 9.9201
C7.ACC1 RFCA 11.3049
C8.ACC1 RFCA 12.6897

...

Q5UND6 QUAD 233.531
Q6UND6 QUAD 233.916
Q9EXP QUAD 242.917
Q10EXP QUAD 243.687
Q11EXP QUAD 244.637
D6DUMP CSBEND 246.333
Q10DUMP QUAD 250.1608
Q11DUMP QUAD 251.4845

1 file(s) copied.
1 file(s) copied.
1 file(s) copied.
1 file(s) copied.
1 file(s) copied.

run Astra

copy your particle distribution into ASTRA_WORK

names “ASTRA_WORK“, “particles.ini” are defined in MAIN.m

if required: copy CSR-wakefiles into ASTRA_WORK

see “calculation with CSR wakes”

run Astra with “TEST.in”

name=“TEST.in” is defined in MAIN.m

what is done by the preprocessor?

1) geometry transformation and range selection

2) put elements to position

2) calculate energy profile, based on initial energy, cavity voltages and v=c

3) set magnet strength, either absolute (based on energy profile) or relative

4) Astra run with single (reference) particle and autophasing=true

5) read Astra phases from output file and set absolute phases if required

6) CSR preparation:

detect trajectory (3d)

approximate by arcs and lines

define csr-wake-mesh (automesh)

define csr-wakes in Astra input file

calculate csr-wakefiles (MATLAB)

7) prepare work directory with Astra input files, field fieles, (not now: csr-wakefiles)

not necessarily in that order

about input

there are three sources of input (for the pre-processor)

1) MAIN.m with all pre-processor settings

2) astra_template.in name defined by for_Astra{2}=…

template with many astra settings as

H_max, H_min, LSPCH, …

some default values can be set by “@” as

! @Q_bore=0.035

it sets the bore-radius of all quadrupole

3) FLASH.flo, FLASH.par names defined by elegant_floor_name=… and

elegant_param_name=…

elegant files (in SDDS format) of floor coordinates

and parameters

about MAIN.m

pre-processor settings

1) Initial conditions: initial time t0 and energy energy0 of reference particle

2) Astra settings

for_Astra{…}=… file names, directory names, auto_phasing and

auto_energy flag

3) Elegant sdds files

elegant_floor_name='input\flash.flo';

elegant_param_name='input\flash.par';

4) Geometry transformation and range

first geometry transformation: geom.trafo_pre

define range to be simulated: geom.start, geom.stop

second geometry transformation: geom.trafo_post

5) Cavity definitions

definition of cavity types: cavity_type_list

list with all cavities in beam line (according to elegant): cavity_list

list with groups of cavities (f.i. modules): cavity_group_list

6) Wakes: to be done

7) CSR wakes

csr_list{…}=… define CSR range and parameters

csr_calc=… control parameters

2) Astra settings

for_Astra{1}=‘TEST.in’; name of Astra input file; will be generated in

work directory (from template file)

for_Astra{2}=…; name of Astra template file

for_Astra{3}=true; auto energy flag: true --> relative magnet strengths

f.i. bending radius; false --> absolute field strength

for_Astra{4}=true; auto phasing flag: true --> Astra auto-phasing;

false --> set absolute phases; these phases are

determined by a one-particle test run

for_Astra{5}=0.5; “horizontal” width (in meter) of bending magnets

for_Astra{6}=…; directory with astra-executable and field files

for_Astra{7}=…; name of work directory

about MAIN.m

4) Geometry transformation and range about MAIN.m

geom.trafo_pre=…; defines an initial geometry transformation of

the setup, defined by the elegant floor description;

it is a shift + rotation transformation of the

Cartesian coordinates and a shift of the s range

(path parameter)

geom.start=…; defines the start-point

geom.stop=…; and end-point of the beam line (after geom.trafo_pre)

geom.trafo_post=…; defines final geometry transformation of the setup

selected by geom.start … geom.stop (after

geom.trafo_pre)

4) Geometry transformation and range about MAIN.m

definition of geometry transformation (geom.trans_pre, geom.trans_post)

geom.trafo_pre ={[g_type,s_type], g_trafo, s_trafo};

g_type = 0 identity transformation; g_trafo is ignored

1 “r to 0” shift start point to origin; g_trafo is ignored

2 “r to 0” + yaw transformation “exe|| to 0”; g_trafo is ignored;

(produces warning if eye||~=0)

3 “r to 0” + pitch transformation “eye|| to 0”; g_trafo is ignored;

(produces warning if exe||~=0)

4 x,y,z-shift + pitch + yaw + roll transformation

5 roll + yaw + pitch transformation + x,y,z-shift

g_trafo =	

x yaw

y roll

z pitch

0 L_radian

L_radian=true/false -->

yaw, roll, pitch in radians / degrees

s_type = 0 identity transformation; s_trafo is ignored

1 “s to 0” path parameter starts from zero; s_trafo is ignored

2 shift s → s+s_trafo

3 path parameter starts from s_trafo

4) Geometry transformation and range about MAIN.m

definition of geometry transformation (geom.trans_pre, geom.trans_post)

4) Geometry transformation and range about MAIN.m

definition of range (geom.start, geom.stop)

geom.start ={type, parameter1, parameter2, left_shift};

geom.stop ={type, parameter1, parameter2, right_shift};

type = 0 definition by element name (from elegant list)

1 definition by z coordinate (cartesian coordinate)

2 definition by s coordinate (path length parameter)

parameter1 element name if type=0

z coordinate if type=1

s coordinate if type=2

parameter2 ignored for type=1 or type=2

number of name appearance (in elegant list) starting from 0;

(otherwise some names are not unique!)

left_shift >0; add drift of this length before start

right_shift >0; add drift of this length after stop

5) Cavity definitions about MAIN.m

definition of cavity types: cavity_type_list

list with (at least) all cavities in elegant beam line: cavity_list

list with groups of cavities (f.i. modules): cavity_group_list

5) Cavity definitions about MAIN.m

definition of cavity types: cavity_type_list

.type cavity-type-identifier;

.frequency resonance frequency in Hz

.geom [xc,yc,zc,zref]; the first three parameters describe the vector

from the left on-axis reference point to the center of the

cavity; “center of cavity” corresponds to the origin of the

cavity field maps; not used: zref is the coordinate of a reference

plane (with respect to the cavity origin);

.wake name of wakefield file (if defined);

.wake_type if .wake is defined: type of wakefield (as ‘taylor_method_f’);

.wake_pos if .wake is defined: [xw,yw,zw,yarot,xarot,zarot]; the first three

parameters describe the vector from the left on-axis reference

point to the origin of the wake computation; the rotation

parameters describe the orientation of the wake-coordinate

system (in radian)

5) Cavity definitions about MAIN.m

.RZ_field if defined: name of cavity field file, rz-monopole description;

.RZ_field_param not used: foreseen for field integral etc.

.E3D_field if defined: name of cavity field file, E3D description;

.E3D_field_param not used: foreseen for field integral etc.

the choice to calculate a certain cavity of “cavity_type” with RZ_field or

E3D_field is defined in the “cavity” list!

wakes might be defined per cavity (in “cavity_type” list) or per module

(in “cavity_group” list)!

files of cavity-fields or wakes have to be present in the directory with the

astra-executable and field files (for_Astra{6})

beamline elements in elegant

bend

drift

drift
cavity quadrupole

left point

right point

local cavity coordinates

center

of cavity

end-fields might be outside of “cavity box”

5) Cavity definitions about MAIN.m

list with (at least) all cavities in elegant beam line: cavity_list

.name cavity-identifier, in agreement with unique element-name in

elegant list;

.type cavity-type identifier, in agreement with type-name in

cavity_type_list;

.groop if defined: groop identifier, in agreement with groop-name

in cavity_groop_list

.specific [am,ph_deg,[xs,ys,zs],[yarot,xarot,zarot]],LE3d];

“am” is cavity amplitude in V; “ph_deg” is cavity phase in deg;

[xs,ys,zs] is shift of cavity center (by perturbation);

[yarot,xarot,zarot] is rotation of cavity (by perturbation);

shift after rotation – to my knowledge !!!

flag LE3d defines if RZ or E3D format is used;

if a cavity is part of a group, the amplitude and phase setting acts relative

to the total amplitude and phase, defined for the group

5) Cavity definitions about MAIN.m

list with groups of cavities (f.i. modules): cavity_group_list

.groop groop identifier, in agreement with groop-names used

in cavity_list

.specific [am,ph_deg,[xs,ys,zs],[yarot,xarot,zarot]];

“am” is groop amplitude in V; “ph_deg” is groop phase in deg;

groop amplitude and phase is used if am>=0, otherwise the

cavity amplitudes and phases are used (cavity_list);

[xs,ys,zs] is shift of cavity center (by perturbation);

not used: [yarot,xarot,zarot];

.wake name of wakefield file (if defined);

.wake_type if .wake is defined: type of wakefield (as ‘taylor_method_f’);

.wake_pos if .wake is defined: [xw,yw,zw,yarot,xarot,zarot]; the first three

parameters describe the origin of the wake computation with

respect to “left of cavity”; the rotation parameters describe

the orientation of the wake-coordinate system (in radian)

5) Cavity definitions about MAIN.m

preprocessor uses no astra-modules:

each cavity is defined individually in the astra-input-file (if it is part of a

cavity group or not)

group amplitudes are used if amplitude-values are non-negative

(1) complex amplitude defined for cavity 1

(2) complex amplitude defined for cavity 2

(3) complex amplitude defined for cavity group (cavity 1 + 2)

(4) complex amplitude of cavity 1 in Astra input file

(5) complex amplitude of cavity 1 in Astra input file

1
2

3

4

5

6) Wakes about MAIN.m

interface to impedance data-base

to be defined; wakes might be removed from cavity lists ?!

to be done

66 68 70 72 74 76 78 80 82 84
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

7) CSR wakes about MAIN.m

trajectory in BC3 (calculated with end fields)

location of discrete

“CSR-wake”-kick

21 22 23 24 25 26 27
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

7) CSR wakes about MAIN.m

trajectory in BC2 (calculated with end fields)

location of discrete

“CSR-wake”-kick

from Astra input-file:

7) CSR wakes about MAIN.m

from preprocessor input-file (Main.m):

define CSR ranges, CSR parameters and control parameters:

7) CSR wakes about MAIN.m

csr_list defines CSR range and CSR parameters

.start start and stop of CSR range;

.stop same format as for geom.start and geom.stop; see 4)

.step {mode,steps}, parameters for arc/line approximation of

trajectory; the trajectory is spited into sections with maximal

two arcs and one line per section; if mode==1: steps is the

number of sections; otherwise: steps is the length of sections

.file_path name of directory with CSR-wake files;

.file_name name of CSR-wake files; number and “.dat” will be added;

.path_list [NW,XW,nsub]; parameters for mesh with wake-positions

(beam-line coordinate)

.bunch_mesh [ds,Ns]; step width and number of steps in wake-file

(bunch coordinate)

7) CSR wakes about MAIN.m

control parameters

csr_calc= [LAstra, LCSR, geo_acc];

LAstra=true: prepare Astra input-file with CSR-wakes;

LCSR=true: compute CSR-wakes; (MATLAB → wake directory)

geo_acc: accuracy parameter for arc/line approximation

calculation of CSR wakes:

() ()∫
−

=
k

k

S

S

k dSSsKsW
1

,

arc/line approximation of trajectory: ()Strajectoryr→

integrated in nsub steps

mesh with wake positions: kS with k = 1 .. NW

auto-mesh parameter: XW XW=0 → equidistant mesh

XW=1 → only mesh-points in arcs

(and anything between)

integrated wakes (“kicked” at Sk):

CSR-kernel K(s,S) depends on trajectory;

Wk(s) is calculated on the mesh s = [0, ds, … N ds]

what has to be done? problems?

1) excessive testing needed

2) interface to impedance data base

2) we need 3d cavity fields (with coupler kicks)

3) Astra: modification of wake-kick algorithm (for wakes in bends)

4) Support of more elements; f.i. sextupoles

known bug (of Astra): wakes of distributions with non-constant charge of

macro-particles

known bug of preprocessor: geom.trans_post works only for identity

