PROGRESS OF RESEARCH

Hyunchang Jin 2012.09.24

MOTIVATION

Figure 3: Saturation power (top) and saturation length (bottom) versus beam initial space (left) and angular (right) offsets.

Figure 4: The saturation power versus quadrupole rms misalignments for 10 random seeds.

V. Khachatryan, Proceedings of EPAC08, Genoa, Italy

- Steady-state simulation of the radiation process at the XFEL SASE1 was presented. The impacts of the beam initial offset and quadrupole misalignment were investigated.
- Time-dependent simulations of the radiation process after aligning quadrupole misalignment are needed for more precise results in the XFEL.

TASK & GOAL

- Tasks
 - Start to end (S2E) simulation for XFEL
 - Orbit correction in undulator section of XFEL
- Simulation codes
 - − Gun → ACC1 : ASTRA
 - ACC39 \rightarrow T2 : ELEGANT
 - SASE1 : GENESIS
- Orbit correction simulation
 - ELEGANT : correct the distorted orbit induced by errors
 - GENESIS : calculation of the radiation process with aligned quadrupoles

S2E - ELEGANT Beam profile after main linac

C1	C2	С3	С
3.5	8.0	4.0	112

S2E - GENESIS Average radiation power (1 seed)

Orbit correction - ELEGANT Corrector strength & orbit size (1 seed)

Quad-misalignment : 100 μ m

Orbit correction - GENESIS Average radiation power (1 seed)

SUMMARY

- S2E
 - ELEGANT : achieved
 - GENESIS : simulations are needed for different random seeds
- Orbit correction
 - ELEGANT : distorted orbit is corrected well in undulator section (< 1 μ m)
 - GENESIS : on going