PROGRESS OF RESEARCH

Hyunchang Jin
2012.09.24

MOTIVATION

Figure 3: Saturation power (top) and saturation length (bottom) versus beam initial space (left) and angular (right) offsets.
V. Khachatryan, Proceedings of EPAC08, Genoa, Italy

- Steady-state simulation of the radiation process at the XFEL SASE1 was presented. The impacts of the beam initial offset and quadrupole misalignment were investigated.
- Time-dependent simulations of the radiation process after aligning quadrupole misalignment are needed for more precise results in the XFEL.

TASK \& GOAL

- Tasks
- Start to end (S2E) simulation for XFEL
- Orbit correction in undulator section of XFEL
- Simulation codes
- Gun \rightarrow ACC1 : ASTRA
- ACC39 \rightarrow T2 : ELEGANT
- SASE1 : GENESIS
- Orbit correction simulation
- ELEGANT : correct the distorted orbit induced by errors
- GENESIS : calculation of the radiation process with aligned quadrupoles

S2E - ELEGANT

Beam profile after main linac

Remove about 3\% bad particles in the analysis

$$
\begin{aligned}
& \varepsilon_{\text {proj, }, \mathrm{x}}=0.9 \mu \mathrm{~m} \\
& \varepsilon_{\text {proj,y }}=2.9 \mu \mathrm{~m} \\
& \text { FWHM }=164.7 \mathrm{fs}
\end{aligned}
$$

Compression factors

C1	C2	C3	C
3.5	8.0	4.0	112

S2E - GENESIS

Average radiation power (1 seed)

Orbit correction - ELEGANT
 Corrector strength \& orbit size (1 seed)

Quad-misalignment : $100 \mu \mathrm{~m}$

Orbit correction - GENESIS

Average radiation power (1 seed)

SUMMARY

- S2E
- ELEGANT : achieved
- GENESIS : simulations are needed for different random seeds
- Orbit correction
- ELEGANT : distorted orbit is corrected well in undulator section ($<1 \mu \mathrm{~m}$)
- GENESIS : on going

