Beam Dynamics Simulations at DESY

Compression Scenarios for FLASH and the European XFEL

Igor Zagorodnov

Collaboration Meeting at PAL

Pohang, Korea 2-6. September 2013

Overview

FLASH Simulations

- Iayout and desired beam parameters
- machine parameters
- simulation methods and results
- Iow energy spread for FLASH 2
- comparison with Elegant
- The European XFEL Simulations
 - Iayout and machine parameters
 - nominal scenarios
 - strong compression
 - new results and comparison with Elegant

Layout and Desired Beam Parameters

Electron beam properties for good lasing

High harmonic module installed in 2010

Layout and Desired Beam Parameters

Rollover Compression vs. Linearized (FLASH)

Igor Zagorodnov | Collaboration Meeting at PAL | 2-6. August 2013 | Seite 4

DES

Technical constrains

How to provide (1) a well conditioned electron beam and (2) what are the properties of the radiation?

(1) Self consistent beam dynamics simulations.(2) FEL simulations.

Optics correction

M.Dohlus, T. Limberg, *Impact of optics on CSR-related emittance growth in bunch compressor chicanes*, PAC 05, 2005

Working points (8 macroparameters)

of Multistage Bunch Compression with Collective Effects, Phys. Rev. ST Accel. Beams, 2011.

How to convert to the machine parameters?

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 14, 014403 (2011)

Semianalytical modeling of multistage bunch compression with collective effects

Igor Zagorodnov[®] and Martin Dohlus Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22603 Hamburg, Germany (Received 6 July 2010; published 13 January 2011)

How to convert to the machine parameters?

Linac Setup:

• Problem to be solved: $\delta_i(\mathbf{X}) =$ What RF setings and initial phase-space $s'_i(\mathbf{X}, \mathbf{Y}, \mathbf{Y})$ distribution is required to achive the $s''_N(\mathbf{X}, \mathbf{Y}, \mathbf{Y})$ requested bunch shape? $\mathbf{X} = (X_2 + X_2)$

 $\delta_{i}(\mathbf{X}) = 0, \quad i = 2, 3, ..., N,$ $s'_{i}(\mathbf{X}, \mathbf{Y}, \alpha_{1}) = Z_{i}, \quad i = 1, 2, ..., N,$ $s''_{N}(\mathbf{X}, \mathbf{Y}, \alpha_{1}, \alpha_{2}) = Z'_{N}, \quad s'''_{N}(\mathbf{X}, \mathbf{Y}, \alpha) = Z''_{N}$ $\mathbf{X} = (X_{2}, ..., X_{N})^{T}, \ \mathbf{Y} = (Y_{2}, ..., Y_{N})^{T}$

• Example solution for a two stage compression setup:

$$\begin{split} X_2 &= \bar{E}_2 - \bar{E}_1, \qquad \alpha_1 = \frac{1 - Z_1}{r_{561}}, \qquad Y_2 = \frac{\alpha_1 \bar{E}_1 - \delta_2' \bar{E}_2}{kZ_1}, \qquad \delta_2' = \frac{Z_1 - Z_2}{r_{562}}, \qquad \alpha_2 = \frac{y_1}{\bar{E}_1}, \qquad y_1 = \frac{Z_2' - \bar{x}_2}{\bar{x}_2} \\ \bar{x}_2 &= \bar{x}_1 - \frac{r_{562}}{\bar{E}_2} \bar{y}_2 - 2t_{562} (\delta_2')^2, \qquad \bar{y}_2 = -k^2 Z_1^2 X_2 - kY_2 \bar{x}_1, \qquad \bar{x}_1 = -2t_{561} \alpha_1^2, \qquad \bar{x}_2 = \bar{x}_1 - \frac{r_{562}}{\bar{E}_2} \bar{y}_2, \\ \bar{y}_2 &= 1 - kY_2 \bar{x}_1, \qquad \bar{x}_{\overline{1}} = -\frac{r_{561}}{\bar{E}_1}, \qquad \alpha_3 = \frac{\hat{y}_1}{\bar{E}_1}, \qquad \hat{y}_1 = \frac{Z_2'' - \bar{x}_2}{\bar{x}_2}, \qquad \hat{x}_2 = \hat{x}_1 - \frac{r_{562}}{\bar{E}_2} \hat{y}_2 - 6u_{562} (\delta_2')^3 - 6t_{562} \delta_2' \delta_2'', \\ \delta_2'' &= \frac{\alpha_2 \bar{E}_1 \bar{y}_2 + \bar{y}_2}{\bar{E}_2}, \qquad \hat{y}_2 = k^3 Z_1^3 Y_2 - 3k^2 Z_1 Z_1' X_2 - kY_2 \hat{x}_1, \qquad \hat{x}_1 = -6u_{561} \alpha_1^3 - 6t_{561} \alpha_1 \alpha_2, \\ Z_1' &= -r_{561} \alpha_2 - 2t_{561} \alpha_1^2. \end{split}$$

As a result we obtain the required phase-space after the injector $\boldsymbol{\alpha}$ and the RF setup **X**, **Y**. $\boldsymbol{\alpha} = (\alpha_1, \alpha_2, \alpha_3)^T$ $\alpha_i = \frac{\partial^i \delta_1}{\partial x^i}$

How to convert to the machine parameters?

Injector Setup:

 Problem to be solved: What RF settings in the injector generate the required phase-space distribution before the first chicane?

$$\begin{split} &\delta_1(X_{1,1},\,Y_{1,1},\,X_{1,n},\,Y_{1,n})=0,\\ &\delta_1'(X_{1,1},\,Y_{1,1},\,X_{1,n},\,Y_{1,n})=\alpha_1,\\ &\delta_1''(X_{1,1},\,Y_{1,1},\,X_{1,n},\,Y_{1,n})=\alpha_2,\\ &\delta_1'''(X_{1,1},\,Y_{1,1},\,X_{1,n},\,Y_{1,n})=\alpha_3. \end{split}$$

Problem can be formulates as:

$$\begin{pmatrix}
1 & 0 & 1 & 0 \\
0 & -k & 0 & -nk \\
-k^2 & 0 & -(nk)^2 & 0 \\
0 & k^3 & 0 & (nk)^3
\end{pmatrix}
\begin{pmatrix}
X_{1,1} \\
Y_{1,n} \\
Y_{1,n} \\
\end{pmatrix}
= \frac{1}{e} \begin{pmatrix}
E_1 - E_0 \\
E_1 \alpha_2 - E_0 \delta'_0 \\
E_1 \alpha_3 - E_0 \delta''_0 \\
E_1 \alpha_3 - E_0 \delta''_0 \\
F_1 \alpha_4 - E_1 - E_0 \\
F_1 \alpha_4 - E_1 - E_0 \\
F_1 \alpha_4 - E_1 \alpha_{i-1} - E_0 \frac{\partial^{i-1} \delta_0}{\partial s^{i-1}},$$
with the solution:

$$X_{1,n} = -\frac{F_3 + F_1 k^2}{k^2 (n^2 - 1)}, \quad Y_{1,n} = \frac{F_4 + F_2 k^2}{k^3 (n^2 - 1)}, \quad F_1 = E_1 - E_0, \quad F_1 = E_1 \alpha_{i-1} - E_0 \frac{\partial^{i-1} \delta_0}{\partial s^{i-1}},$$

$$i = 2, 3, 4.$$

Working points (8 macroparameters)

Working points (8 macroparameters)

$$1.4 \le \frac{r_1}{m} \le 1.93$$

Iow compression in BC1 and high compression in BC2
 maximal energy chirp transported through BC1 for the same C₁

$$r_1 = 1.93 \text{m}$$

 $I_0 = 52A$ $I_f = 2500A$

$$C = \frac{I_f}{I_0} = 48$$

 $E_1 = 130 \text{ MeV}$ $E_2 = 450 \text{ MeV}$ $r_1 = 1.93 \text{ m}$ $r_2 = ?$ $C_1 = ?$ C = 48 $\partial_s C^{-1} = ?$ $\partial_s^2 C^{-1} = ?$

Working points (8 macroparameters)

Working points (8 macroparameters)

Working points (8 macroparameters)

Choosing of machine parameters

Working points (8 macroparameters)

$$E_1 = 130 \text{ MeV}$$

 $E_2 = 450 \text{ MeV}$
 $r_1 = 1.93 \text{ m}$
 $r_2 = 6 \text{ m}$
 $C_1 = 2.84$
 $C = 48$
 $\partial_s C^{-1} = ?$
 $\partial_s^2 C^{-1} = 2000 \text{ m}^{-2}$

RF tolerance in ACC1 (10% change of C)

Optimum from the approximate solution

$$C_{1}^{-1} = \sqrt{\frac{-r_{56(2)}E_{1} - r_{56(1)}E_{2}C^{-1}}{kr_{56(1)}r_{56(2)}(E_{2} - E_{1})}}$$

Tolerances (10 % change of compression)

Charge	Energy	Energy	Deflecting	Deflecting	Compression	Total	First	Second
Q,	in BC2	in BC3	radius in BC2	radius in BC3	in BC2	compression	derivative	derivative
nC	E ₁ ,	E ₂ ,	r ₁ ,	r ₂ ,	C ₁	С	Z2',	Ζ2 ["] ,
	[MeV]	[MeV]	[m]	[m]			[m ⁻¹]	[m ⁻²]
1				6	2.84	48	1	2e3
0.5	120	450	1.02	6.93	4.63	90	1	3.5e3
0.25	130	430	1.95	7.8	6.57	150	0.7	4e3
0.1				9.3	10.3	240	0	4e3
0.02				15.17	31.8	1000	-0.5	5e3

 C_1 : scaling for different charges

$$x'' + k_{x}x = \frac{1}{I_{A}\beta^{3}\gamma^{3}} \frac{I}{\sigma_{x}(\sigma_{x} + \sigma_{y})} x \implies \frac{\max[I_{1}(Q)]}{\sigma_{r}^{2}(Q)} \sim \frac{\max[I_{1}(Q)]}{\varepsilon(Q)} \sim \frac{\max[I_{0}(Q)]C_{1}(Q)}{\sqrt[2]{Q}} \sim const$$
(trajectory equation in FODO cell)
we have used a more aggressive scaling
$$\frac{\max[I_{0}(Q)]C_{1}(Q)}{\sqrt[4]{Q}} \sim const$$

$$\mathbf{x}_0 = \mathbf{A}_0^{-1}(\mathbf{f}_0)$$

Analytical solution without self-fields

Solution with self-fields

3d simulation method (self-consistent)

- W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003)
- W3 ACC39 wake (TESLA Report 2004-01, DESY, 2004)
- TM transverse matching to the design optics

8 macroparameters define 6 equations

$$\mathbf{A}(\mathbf{x}) = \mathbf{f}_0$$

Analytical solution without self-fields + iterative procedure with them

RF settings in accelerating modules

Charge,	V _{1,1} ,	φ _{1,1} ,	V _{1,3} ,	φ _{1,3} ,	V ₂ ,	φ ₂ ,
nC		[deg]		[deg]		[deg]
1	144	-4.66	22.6	145	350	23.4
0.5	143.7	4.042	19.65	158.4	351	23.65
0.25	143.36	2.493	20.81	153.9	352.6	23.96
0.1	144.8	-6.31	25.6	137.5	356.5	25.62
0.02	144.9	-3.894	25.58	141.65	339.8	19.385

Q=1 nC

Q=0.25 nC

Q=0.02 nC

Igor Zagorodnov | Collaboration Meeting at PAL | 2-6. August 2013 | Seite 32

DES

Tolerances (analytically) without self fields (10 % change of compression)

Q, nC		1	0.5	0.25	0.1	0.02
ACC1	$ \Delta V /V$	0.001	0.004	0.0012	0.0003	0.00004
	Δφ , degree	0.065	0.025	0.013	0.007	0.0014
ACC39	$ \Delta V /V$	0.008	0.01	0.0026	0.0008	0.00013
	Δφ , degree	0.13	0.061	0.033	0.02	0.004
ACC2/3	$ \Delta V /V$	0.0042	0.0033	0.0026	0.0024	0.0016
	Δφ , degree	0.15	0.15	0.15	0.17	0.17

Tolerances (from tracking) with self fields agree with this table

		without*				
Bunch charge, nC	1	0.5	0.25	0.1	0.02	0.5-1
Wavelength, nm		6				
Beam energy, MeV		1000				
Peak current, kA	2.5			2.1	1-1.5	1.3-2.2
Slice emmitance,mm-mrad	1-1.3	0.7-0.9	0.5-0.7	0.4-0.5	0.3-0.4	1.5-3.5
Slice energy spread, MeV	0.1-0.2	0.1-0.2	0.25	0.2-0.4	0.25	0.3
Saturation length, m	13	12	11	10	11	22-32
Energy in the rad. pulse, µJ	1000- 1400	700	500	200	30	50-150
Radiation pulse duration FWHM, fs	70	30	17	7	2	15-50
Averaged peak power, GW		2-4				
Spectrum width, %	0.4-0.6 0.8-1					0.4-0.6
Coherence time, fs	4-5			-	-	-

Low Energy Spread for FLASH 2 FLASH 2 (from 2013)

DESY

FLASH 2 (from 2013)

FLASH 2

Photon Beam	HHG	SASE	
Wavelength range (fundamental)	10 - 40 nm	4 - 80 nm	
Average single pulse energy	1 – 50 µJ	1 – 500 µJ	
Pulse duration (FWHM)	<15 fs	10 – 200 fs	
Peak power (from av.)	1 – 5 GW	1 – 5 GW	
Spectral width (FWHM)	0.1 – 1 %	0.5 – 1.5 %	
Peak Brilliance*10 - 40 nm	10 ²⁸ - 10 ³¹	10 ²⁸ - 10 ³¹	

Energy spread < 120keV

Energy spread vs. charge?

Slice emittance [um]

Slice energy spread [keV]

Q = 1nC Q = 0.5nC Q = 0.25nC

E in BC 2 = 145 MeV, ACC1 (50%, 50 %) E in BC 2 = 145 MeV, ACC1 (37.5%, 62.5 %) E in BC 2 = 130 MeV, ACC1(40%, 60 %)

RF settings in accelerating modules (without self fields)

Charge,	V _{1,1} ,	φ _{1,1} ,	V _{1,3} ,	φ _{1,3} ,	V ₂ ,	φ ₂ ,
nC	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]
Track1D	162.41	9.34	20.32	183.17	332.67	23.53
Elegant	162.41	9.34	20.32	183.17	332.51	23.47
ASTRA	162.47	9.41	20.32	183.17	332.41	23.41

β_x [m] $\boldsymbol{\beta}_{v}$ [m] ſ *z* [m] *z* [m]

\mathcal{E}_{x} [µm] $\boldsymbol{\mathcal{E}}_{v}$ [µm] 3 3 2.5 2.5 2 2 1.5 1.5 0.5 0.5 0 0 50 100 150 200 50 100 150 200 *z* [m] *z* [m]

Elegant vs ASTRA without self-fields

Elegant vs ASTRA without self-fields

RF settings in accelerating modules (with self fields)

Charge,	V _{1,1} ,	φ _{1,1} ,	V _{1,3} ,	φ _{1,3} ,	V ₂ ,	φ ₂ ,
nC	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]
Track1D	162.41	9.34	20.32	183.17	332.67	23.53
(without)						
Track1D	157.81	-3.92	20.81	145.89	339.19	25.86
(selffield)						
Elegant	157.81	-3.92	20.81	145.90	339.01	25.79
ASTRA	157.84	-3.96	20.81	145.92	338.42	25.58

ASTRA without and with self-fields

Elegant vs ASTRA with self-fields

 \mathcal{E}_{x} [µm]

 $\boldsymbol{\mathcal{E}}_{\boldsymbol{y}}$ [µm]

Elegant vs ASTRA with self-fields

I [kA]

 σ_{E} [MeV]

Elegant vs ASTRA with self-fields

June 2007: Official project start announced on basis of start version at 850M€/y2005 construction cost

Early 2009: Start of construction

30.11.2009: Signing of international state treaty which provides the basis for the foundation of the European XFEL GmbH in charge of the construction and operation of the XFEL facility

DESY leads the consortium that constructs the accelerator

End 2013: First beam in injector

End 2014: First beam in main linac

End 2015: Ready for users

Accelerator Challenges at the European XFEL

Winfried Decking (DESY) LBNL, May 5 2011

	Baseline	New Parameter Set
Electron Energy	17.5 GeV	10.5/14/17.5 GeV
Bunch charge	1 nC	0.02 - 1 nC
Peak current	5 kA	2 - 5 kA
Slice emittance	< 1.4 mm mrad	0.4 - 1.0 mm mrad
Slice energy spread	1.5 MeV	4 - 2 MeV
Shortest SASE wavelength	0.1 nm	0.05 nm
Pulse repetition rate	10 Hz	10 Hz
Bunches per pulse	3000	2700

Accelerator Challenges at the European XFEL

Winfried Decking (DESY) LBNL, May 5 2011

U

Layout

Working points (11 macro-parameters)

What is the optimal choice?

Wake compensation? $\delta_{E_3} = \frac{1}{\sqrt{3}} \frac{QW_{\text{Linac}}}{E_3}$

 $r_{56(1)}^0$

$$\left(\delta_{E_1},\delta_{E_2},\delta_{E_3}\right)$$

+ scan of the RF tolerance vs. C_1 and C_2

if
$$r_{56(i)}^{0} > \max(r_{56(i)})$$
, *then* $r_{56(i)}^{0} = \max r_{56(i)}$
if $r_{56(i)}^{0} < \min(r_{56(i)})$, *then* $r_{56(i)}^{0} = \min r_{56(i)}$

Macro-parameters

Charge	Momentum	Compr.	Momentum	Compr.	Momentum	Total	First	Second
Q,	compaction	in BC ₁	compaction	in BC ₂	compaction	compr.	derivative	derivative
nC	factor in BC_1	C_1	factor in BC_2	C_2	factor in BC ₃	С	Ζ',	Ζ",
	R _{56,1} ,		R _{56,2} ,		R _{56,3} ,		[m ⁻¹]	[m ⁻²]
	[mm]		[mm]		[mm]			
1	-100	3.5	-54	8	-20	121	0	2000
0.5	-89	3.5	-50	8	-20	217	0	1000
0.25	-78	3.5	-50	8	-20	385	0	1000
0.1	-71	3.5	-50	8	-20	870	0	1000
0.02	-67	3.5	-50	8	-20	2100	0	1000

 $E_1 = 130 \,\mathrm{MeV}$ $E_2 = 700 \,\mathrm{MeV}$ $E_3 = 2400 \,\mathrm{MeV}$

RF settings in accelerating modules

Charge,	V _{1,1} ,	φ _{1,1} ,	V _{1,3} ,	φ _{1,3} ,	V ₂ ,	φ ₂ ,	V ₃ ,	φ ₃ ,
nC	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]	[MV]	[deg]
1	145	5.4	22	164	656	29.7	1832	21.7
0.5	154	15.9	24.8	185.6	661	30.4	1824	21.1
0.25	159	19.4	26.6	190.4	652	29	1860	23.9
0.1	160	19.2	27	187.8	645	27.9	1887	25.7
0.02	158	17	28	181.9	640	27.1	1893	26.1

Tolerances (analytically 10 % change of C)

Q, nC	1	0.5	0.25	0.1	0.02
$\left \Delta ilde{V_{1,1}} ight / V_{1,1}^0$	5e-4	3e-4	2e-4	1e-4	5e-5

Beam dynamics simulation

Full 3D simulation method (200 CPU, ~10 hours)

ASTRA (tracking with 3D space charge, DESY, K. Flötmann)
 CSRtrack (tracking through dipoles, DESY, M. Dohlus, T. Limberg)

- W1 -TESLA cryomodule wake (TESLA Report 2003-19, DESY, 2003)
- W3 ACC39 wake (TESLA Report 2004-01, DESY, 2004)
- TM transverse matching to the design optics

Beam dynamics simulation

Fast 3D simulation method (1 CPU, ~10 min)

Q=1 nC

Q=250 pC

Q=20 pC

Beam parameters from S2E simulations

Parameter	Unit					
Bunch charge	nC	1	0.5	0.25	0.1	0.02
Peak current (gun)	А	43	24	13.5	5.7	1.2
Bunch length (gun, FWHM)	ps	25	22	20	17	17
Slice emittance (gun)	μm	0.8	0.5	0.3	0.21	0.09
Projected emittance (gun)	μm	1	0.7	0.6	0.3	0.1
Compression		114	233	363	877	3833
Peak current	kA	4.9	5.6	4.9	5	4.6
Bunch length (FWHM)	fs	178	72	39	12	2.2
Slice emittance	μm	1	0.7	0.5	0.3	0.17
Projected emittance	μm	3.5	2.2	1.5	0.84	0.26
Slice energy spread	MeV	0.45	0.44	0.6	0.6	0.8
(laser heater off)						

DES

Radiation energy statistics (1-25-120 runs)

Radiation Properties from S2E

Bunch charge, nC	1	0.25	0.02	
Wavelength, nm	0.1			
Beam energy, GeV	14			
Peak current, kA		~ 5		
Slice emmitance,mm-mrad	1	0.5	0.2	
Saturation length, m	85	60	45	
Energy in the rad. pulse, mJ	1-4	1-2	0.1-0.4	
Radiation pulse duration FWHM, fs	25-50	10-20	1-2	
Averaged peak power, GW	10-50	10-100	50-150	
Spectrum width, %		0.15-0.3	0.18-0.5	

Strong Compression

Q=1 nC, I=10kA

Current, emittance, energy spread

Strong Compression

Q=1 nC

Parameter	Unit		
Bunch charge	nC	1	
Peak current (gun)	Α	43	
Compression		116	228
Peak current	kA	5	9.8
Bunch length (FWHM)	fs	178	75
Slice emittance	μm	1	1
Projected emittance	μm	3.5	8
Slice energy spread	MeV	0.45	1
(laser heater off)			

Macro-parameters

Momentum	Compr.	Momentum	Compr.	Momentum	Total	Second
compaction	in BC ₁	compaction	in BC ₂	compaction	compr.	derivative
factor in	C.	factor in	C	factor in	С	$(C^{-1})''$
BC_1	ΟŢ	BC_2	C_{2}	BC ₃	U	(°),
R _{56,1} ,		R _{56,2} ,		R _{56,3} ,		
[mm]		[mm]		[mm]		
-78	3.5	-50	8	-20,,-24	385	1000

$$E_1 = 130 \,\mathrm{MeV}$$
 $E_2 = 700 \,\mathrm{MeV}$ $E_3 = 2400 \,\mathrm{MeV}$

Current, emittance, energy spread

s [µm]

DESY

R_{56.3} =-22.6 mm

R_{56.3} =-22.6 mm (70% of particles)

Current, emittance, energy spread

R_{56,3} =-23.2 mm (70% of particles)

Beam core parameters vs. R₅₆

Beam core parameters vs. R₅₆

Radiation energy vs. R₅₆ (with und. wake and taper)

 $z = 60 {\rm m}$

Strong Compression (SLAC)

SLAC-PUB-14234

FEMTOSECOND OPERATION OF THE LCLS FOR USER EXPERIMENTS*

DESY

Radiation energy vs. compression rate

 $z = 60 \mathrm{m}$

Radiation energy vs. compression rate

z = 60 m

Radiation power vs. compression rate

DESSY

New Results and Comparison with Elegant

New Results and Comparison with Elegant

Q=1nC

New Results and Comparison with Elegant

Q=250 pC

Outlook

