

Wakefields impact on SASE2 XFEL performance

Igor Zagorodnov Beam Dynamics Group Meeting 9.06.08

UNDULATOR- CELL(6.1m) = UNDULATOR (5m) + INTERSECTION (1.1m)

N	Element	from	to	Effective Length	Material	Conduct.	Relax. Time	Oxid layer	Rough ness
		mm	mm	mm		1/Omm/m	sec	nm	nm
1	Eliptical pipe	0	5288	5161	Aluminium	3,66E+07	7,10E-15	5	300
2	Pump	5161	5266	105	Aluminium	3,66E+08	7,10E-15	5	300
3	Absorber/Round transition	5266	5288	22	Copper	5,80E+07	2,46E-14	5	300
4	Round pipe	5288	6100	652	Copper	5,80E+07	2,46E-14	5	300
5	Below	5288	5318	30	BeCu 174	2,78E+07	2,46E-14	5	300
6	BPM	5373	5473	100	Stainless Steel 304	1,40E+06	2,40E-15	5	300
7	Below	5513	5543	30	BeCu 174	2,78E+07	2,46E-14	5	300
8	Round/Eliptical transition	6100	6100	0					

$\sigma = 25 \,\mu m$ $q = 1 \,n C$

	N	Element	Geom Loss	Geom Spread	Loss	Spread
			kV	kV	kV	kV
	1	Eliptical pipe	0	0	239	274
	2 Pump		4,4	4,5	9	10
	3	Absorber/Round transition	69	27	70	28
	4	Round pipe	0	0	22	32
	5	Below	24	9	25	10
	6	BPM	42	17	70	34
	7	Below	24	9	25	10
	8	Round/Eliptical transition	36	14	36	14
		Energy Spread	199,4	80,5	496	412(365)
5% 8% 7% 2%	3% - 8	67%	er Pipe sition	19	%	□ geom ■ res.+oxd.+rough

Enrgy Loss

2005 2007 2007

Gaussian fit of the bunch shape from S2E simulations

 fractional energy oscillation amplitude

	LCLS	XFEL	XFEL
		SASE2	SASE2
		(q=1nC,	(q=0.56nC,
		sig=25mkm)	sig=12.5mkm)
W _A , kV/m	200	140	220
L, m	100	200	200
(L_sat)	(90)	(175)	(175)
E, GeV	14	17.5	17.5
ρ_1	3.2e-4	4e-4	4e-4
δ_A	4,5	4	6.3

Genesis (S.Reiche et al)

- only 3D
- 3D Cartesian field solver (ADI)
- Runge-Kutta integrator
- Dirichlet boundary conditions
- transverse motion
- many other physics
- parallel (MPI)

ALICE

- 1D/2D/3D
- 3D azimuthal field solver (Neumann)
- Leap-Frog integrator
- Perfectly Matched Layer
- transverse motion
- simplified model
- parallel (MPI)
- tested by me on the examples from the book of SSY

(~Saldin et al, 2000 "The Physics ...",)

The European X-Ray Free Electron Laser Project

J. Pflüger

XFEL Meeting June15,, 2005

General properties of XFEL sources

- Operation at fixed electron energy 17.5 GeV
- Continuos covering of design wavelength range with three SASE FELs

Electron beam			Undulat	OFS.		
	Units		ondular	<u>, , , , , , , , , , , , , , , , , , , </u>		
Energy	GeV	17.5		λ_{r}	λU	L_{W}
Bunch charge	nC	1		nm	mm	m
Peak current	kA	5	SASE1	0.1	35.6	200
Bunch length (rms)	μ m	25	SASE2	0.1-0.4	48	260
Norm. emittance (rms)	mm-mrad	1.4	SASE3	0.4-1.6	65	130
Energy spread (rms)	MeV	1.5				
# bunches p. pulse	#	3250	Pos	sible XU	V opti	no
Repetition rate	Hz /	10	SASE4	1.6-6.4	110	80
	2.5 Me	eV?				

Genesis 2.0 released on 16.04.2008

Genesis 2.0: ALICE: Hammersley and Box-Mueller Hammersley and the inverse error function Sobol and the inverse error function

 $\begin{array}{ll} \varepsilon = 1.4 \, \mathrm{mm^*mrad} \\ \sigma_E = 2.5 \, \mathrm{MeV} \end{array} & \begin{array}{l} C = 0 \\ \lambda_s = 0.1 \, \mathrm{nm} \end{array} & \begin{array}{l} \mathsf{I=5KA} \\ \mathsf{N}_{\lambda} \sim 10 \, 400 \end{array}$

Matched Gaussian Beam Parameters

Amplifier with matched Gaussian beam

SASE with matched Gaussian beam

Averaged in space through 1500*56 slices

SASE with matched Gaussian beam and wake

Averaged in space through 500*56 slices

Beam parameters (S2E)

Beam parameters (S2E)

SASE with matched Gaussian beam

Averaged in space through 1000*56 slices

1.7 mJ		without wake, without taper	with taper	with wake	with wake, with taper
	Energy, mJ	1.7	3.1	0.13	2.3
	E/E ₀	100%	180%	7.3%	136%

 $E_0 = 1.7 \text{ m}.$

SASE with S2E beam

Averaged in space through 1000*56 slices

3 mJ		without wake, without taper	with wake	with wake, with taper
	energy,mJ	0.93	0.06	2
	E/E ₀	100%	6.1%	220%

 $E_0 = 0.93$ m.

Optimal taper

Optimal taper

$$B_{u} = 3.694 \exp\left(-5.068 \frac{g}{\lambda_{u}} + 1.52 \left(\frac{g}{\lambda_{u}}\right)^{2}\right)$$

$$\frac{\Delta K_{rms}}{K_{rms}} \approx -\frac{\Delta g}{g} \left(-5.068 \frac{g}{\lambda_{u}} + 3.04 \left(\frac{g}{\lambda_{u}}\right)^{2}\right)$$

$$K_{rms} = 93.4 \lambda_{u} B_{u} / \sqrt{2}$$

$$\Delta g = -0.0124 \Delta K_{rms} / K_{rms}$$

$$\Delta g = -0.0124 \Delta K_{rms} / K_{rms} = 60 \cdot 10^{-6} [m]$$

$$\Delta g = -0.0124 \frac{\Delta K}{K} \approx -50 \ \mu m$$

$$\frac{dg}{dz} = -0.24 \frac{\mu m}{m} \approx -1.2 \frac{\mu m}{module}$$

dz

Comparison with previous estimations

Undulator gap error tolerances for wakefield compensation in XFEL Igor Zagorodnov **BDGM**, **DESY** 27.03.06/08.05.06

SASE (2005) $\varepsilon \approx 0.7 \text{ mm} \times \text{mrad}$

SASE 2 parameters

Parameter	symbol	unit	Value
radiation wavelength	λ	nm	0.1
Energy	E	GeV	17.5
energy spread	$\sigma_{\scriptscriptstyle E}$	MeV	1
undulator parameter	K_{rms}		1.97
Emmitance	\mathcal{E}_n	mm*mrad	0.7
peak current	Ι	kA	5
peak current average beta function	Ι β	kA m	5 17.25
peak current average beta function undulator section length	$\frac{I}{\beta}$ L_{sect}	kA m m	5 17.25 5
peak currentaverage beta functionundulator section lengthintersection length	$ I \beta L_{sect} L_{inters} $	kA m m m	5 17.25 5 1.1
peak current average beta function undulator section length intersection length total length	I β L_{sect} L_{inters} L_{total}	kA m m m m	5 17.25 5 1.1 260

$$\rho = 7.1 \cdot 10^{-4}$$

The maximum power dependence on tapering (left) and the radiation power along the undulator (right)

$$W_{sh} = 3\rho \frac{W_b}{N_c \sqrt{\pi \ln N_c}} = 11800[W]$$

$$W_{\parallel} = 150 kV / nC / m$$

As one can see from this figure, in the absence of wakefields the radiation pulse energy is 2.3 mJ at 130m. It is reduced to 1.2 mJ by undulator wakefields. The optimal linear undulator tapering allows to avoid the degradation and to increase the radiation energy up to 3.5 mJ at 130m

 $E_0 = 0.93 \text{ mJ}$

	without wake, without taper	with wake	with wake, with taper
energy,mJ	0.93	0.06	2
E/E ₀	100%	6.1%	220%

As one can see from this figure, in the absence of wakefields the radiation pulse energy is 2.3 mJ at 130m. It is reduced to 1.2 mJ by undulator wakefields. The optimal linear undulator tapering allows to avoid the degradation and to increase the radiation energy up to 3.5 mJ at 130m

The radiation power in the middle (left) and at the end of the undulator (right)

SASE (2005) $\varepsilon \approx 0.7 \text{ mm} \times \text{mrad}$

$$B_{u} = 3.694 \exp\left(-5.068 \frac{g}{\lambda_{u}} + 1.52 \left(\frac{g}{\lambda_{u}}\right)^{2}\right)$$
$$\frac{\Delta K_{rms}}{K_{rms}} \approx -\frac{\Delta g}{g} \left(-5.068 \frac{g}{\lambda_{u}} + 3.04 \left(\frac{g}{\lambda_{u}}\right)^{2}\right)$$
$$K_{rms} = 93.4 \lambda_{u} B_{u} / \sqrt{2}$$
$$\Delta g = -0.0124 \Delta K / K$$

$$\Delta g = -0.0124 \,\Delta K_{rms} \,/\, K_{rms}$$

Optimal taper

$$\Delta g = -0.0124 \,\Delta K_{rms} / K_{rms} = 60 \cdot 10^{-6} [m]$$

Impact of statistical errors of undulator gap on power gain.

$$\frac{\frac{P_0 - \langle P \rangle}{P_0}}{\frac{P_0 - \left[\langle P \rangle - 3\sigma_p \right]}{P_0}} 100\% \approx 20\% \qquad for \quad \sigma_g = 10 \,\mu m$$

SASE (2005) $\varepsilon \approx 0.7 \text{ mm} \times \text{mrad}$ For 5 mkm gap error at position z=130m

Steady-state

$$\frac{\left\langle P_{\max}^{\sigma_{g}}\right\rangle}{P_{\max}^{0}} = 0.91$$

$$\sigma_P = 0.22$$

SASE

$$\frac{\left\langle E_{\max}^{\sigma_{E}}\right\rangle}{E_{\max}^{0}} = 0.88$$

$$\sigma_E = 0.16$$

